【題目】如圖,AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點(diǎn)O.
(1)求證:AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2)直線OA垂直平分BC.理由見(jiàn)解析.
【解析】試題分析:(1)根據(jù)AAS推出△ACD≌△ABE,根據(jù)全等三角形的性質(zhì)得出即可;
(2)證Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根據(jù)等腰三角形的性質(zhì)推出即可.
試題解析:(1)證明:∵CD⊥AB,BE⊥AC,
∴∠ADC=∠AEB=90°,
△ACD和△ABE中,
∵
∴△ACD≌△ABE(AAS),
∴AD=AE.
(2)猜想:OA⊥BC.
證明:連接OA、BC,
∵CD⊥AB,BE⊥AC,
∴∠ADC=∠AEB=90°.
在Rt△ADO和Rt△AEO中,
∵
∴Rt△ADO≌Rt△AEO(HL).
∴∠DAO=∠EAO,
又∵AB=AC,
∴OA⊥BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形:線段、角、三角形、四邊形,等邊三角形、等腰三角形、正五邊形、正六邊形中,是軸對(duì)稱圖形的有( )個(gè)
A.5B.6C.7D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程x2-4x+3=0中二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)分別是( )
A. 1,4,3 B. 2,-4,3 C. 1,-4,3 D. 2,-4,3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果點(diǎn)P(m+3,m+1)在平面直角坐標(biāo)系的x軸上,則m=( 。
A.0B.-1C.-2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形兩邊長(zhǎng)分別為4和6,則第三邊的長(zhǎng)不可能是( )
A.4B.6C.8D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊△ABC邊AB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s.
(1)連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動(dòng)的過(guò)程中,∠CMQ變化嗎?若變化,則說(shuō)明理由,若不變,則求出它的度數(shù);
(2)試求何時(shí)△PBQ是直角三角形?
(3)如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠CMQ變化嗎?若變化,則說(shuō)明理由,若不變,則求出它的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用配方法解方程x2﹣4x﹣1=0,方程應(yīng)變形為( 。
A. (x+2)2=3 B. (x+2)2=5 C. (x﹣2)2=3 D. (x﹣2)2=5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com