在△ABC中,∠B是鈍角,AB=6,CB=8,則AC的范圍是( 。
A、8<AC<10B、8<AC<14C、2<AC<14D、10<AC<14
分析:要求AC的范圍,就要確定對應(yīng)角的范圍,當(dāng)∠B=90°時,根據(jù)勾股定理計算AC的長度,根據(jù)鈍角大于90°和三角形兩邊之和大于第三邊,可以確定AC的范圍.
解答:解:根據(jù)三角形兩邊之和大于第3邊,兩邊之差小于第3邊,可以確定AC的范圍為2<AC<14,
又因?yàn)楫?dāng)∠B為直角時,AC=
62+82
=10,
而題目中給出的∠B為鈍角,所以AC>10,
整理得:AC的范圍為10<AC<14.
故選D.
點(diǎn)評:本題考查的是三角形的三邊關(guān)系,合理的運(yùn)用勾股定理確定第3邊的范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,DE是AC的中垂線,AE=3cm,△ABD得周長為13cm,則△ABC的周長是
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AD是中線,G是重心,
AB
=
a
,
AD
=
b
,那么
BG
=
 
.(用
a
b
表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、在△ABC中,D是邊AB上一點(diǎn),∠ACD=∠B,AB=9,AD=4,那么AC的長為
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,AD是BC邊上的高,BE平分∠ABD,交AD于E.已知∠BED=60°,∠BAC=50°,則∠C=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾的探究片段,完成所提出的問題.
探究1:如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點(diǎn),通過分析發(fā)現(xiàn)∠BOC={90°}+
1
2
∠A,理由如下:
∵BO和CO分別是∠ABC和∠ACB的角平分線,
∴∠1=
1
2
∠ABC,∠2=
1
2
∠ACB
∴∠1+∠2=
1
2
(∠ABC+∠ACB)=
1
2
(180°-∠A)=90°-
1
2
∠A
∴∠BOC=180°-(∠1+∠2)=180°-(90°-
1
2
∠A)=90°+
1
2
∠A
(1)探究2:如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.
(2)探究3:如圖3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?(直接寫出結(jié)論)
(3)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BO和CO的交點(diǎn),則∠BOC與∠A+∠D有怎樣的關(guān)系?(直接寫出結(jié)論)

查看答案和解析>>

同步練習(xí)冊答案