【題目】如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE,垂足為G,BG=,則△CEF的周長(zhǎng)為( 。
A. 8 B. 9.5 C. 10 D. 11.5
【答案】A
【解析】題意在綜合考查平行四邊形、相似三角形、和勾股定理等知識(shí)的掌握程度和靈活運(yùn)用能力,同時(shí)也體現(xiàn)了對(duì)數(shù)學(xué)中的數(shù)形結(jié)合思想的考查.在□ABCD中,由已知條件可得△ADF是等腰三角形,AD=DF=9;△ABE是等腰三角形,AB=BE=6,所以CF=3;在△ABG中,BG⊥AE,AB=6,BG=4,可得AG=2,又△ADF是等腰三角形,BG⊥AE,所以AE=2,AG-4,所以△ABE的周長(zhǎng)等于16,又由□ABCD可得△CEF∽△BEA,相似比為1:2,所以△CEF的周長(zhǎng)為8.
解:∵在平行四邊形ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分線交BC于點(diǎn)E,
∴AB∥DC,∠BAF=∠DAF,
∴∠BAF=∠F,∴∠DAF=∠F,∴AD=FD,
∴△ADF是等腰三角形,
同理△ABE是等腰三角形,AD=DF=9;
∵AB=BE=6,∴CF=3;
∴在△ABG中,BG⊥AE,AB=6,BG=4,可得:AG=2,又BG⊥AE,∴AE=2AG=4,
∴△ABE的周長(zhǎng)等于16,
又∵平行四邊形ABCD,∴△CEF∽△BEA,相似比為1:2,
∴△CEF的周長(zhǎng)為8.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實(shí)行階梯水價(jià).水價(jià)分檔遞增,計(jì)劃使第一檔、第二檔和第三檔的水價(jià)分別覆蓋全市居民家庭的80%,15%和5%,為合理確定各檔之間的界限,隨機(jī)抽查了該市5萬(wàn)戶(hù)居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計(jì)圖.如圖所示,下面四個(gè)推斷( 。
①年用水量不超過(guò)180m3的該市居民家庭按第一檔水價(jià)交費(fèi);
②年用水量超過(guò)240m3的該市居民家庭按第三檔水價(jià)交費(fèi);
③該市居民家庭年用水量的中位數(shù)在150﹣180之間;
④該市居民家庭年用水量的平均數(shù)不超過(guò)180.
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D在⊙O的直徑AB的延長(zhǎng)線上,點(diǎn)C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠A=90°,AB=AC , BC=63cm,現(xiàn)沿底邊依次從下往上裁剪寬度均為3cm的矩形紙條,如圖所示,已知剪得的紙條中有一張是正方形,則這張正方形紙條是從下往上數(shù)第張.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列這些復(fù)雜的圖案都是在一個(gè)圖案的基礎(chǔ)上,在“幾何畫(huà)板”軟件中拖動(dòng)一點(diǎn)后形成的,它們中每一個(gè)圖案都可以由一個(gè)“基本圖案”通過(guò)連續(xù)旋轉(zhuǎn)得來(lái),旋轉(zhuǎn)的角度是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(4,0),點(diǎn)B(0,3),把△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得△A′BO′,點(diǎn)A,O旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A′,O′,記旋轉(zhuǎn)角為α.
(1)如圖①,若α=90°,求AA′的長(zhǎng);
(2)如圖②,若α=120°,求點(diǎn)O′的坐標(biāo);
(3)在(Ⅱ)的條件下,邊OA上 的一點(diǎn)P旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為P′,當(dāng)O′P+BP′取得最小值時(shí),求點(diǎn)P′的坐標(biāo)(直接寫(xiě)出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC中,∠A = 3∠C = 90,AB = 3,點(diǎn)Q在邊AB上且BQ =,過(guò)Q作QF∥BC交AC于點(diǎn)F,點(diǎn)P在線段QF上,過(guò)P作PD∥AC交AB于點(diǎn)D,PE∥AB交BC于點(diǎn)E,當(dāng)P到△ABC的三邊的距離之和為3時(shí),PD + PE + PF =_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)為方便游客參觀,在每個(gè)景點(diǎn)均設(shè)置兩條通道,即樓梯和無(wú)障礙通道.如圖,已知在某景點(diǎn)P處,供游客上下的樓梯傾斜角為30°(即∠PBA=30°),長(zhǎng)度為4m(即PB=4m),無(wú)障礙通道PA的傾斜角為15°(即∠PAB=15°).求無(wú)障礙通道的長(zhǎng)度.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin15°≈0.21,cos15°≈0.98)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com