【題目】在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°.
(1)如圖1,當(dāng)點(diǎn)A、C、D在同一條直線上時(shí),AC=12,EC=5.
①求證:AF⊥BD,
②求AF的長(zhǎng)度;
(2)如圖2,當(dāng)點(diǎn)A、C、D不在同一條直線上時(shí).求證:AF⊥BD;
(3)如圖3,在(2)的條件下,連接CF并延長(zhǎng)CF交AD于點(diǎn)G,∠AFG是一個(gè)固定的值嗎?若是,求出∠AFG的度數(shù),若不是,請(qǐng)說(shuō)明理由.
【答案】
(1)①證明:如圖1,
∵AC=BC,∠ACB=∠ECD=90°,EC=DC,∴△ACE≌△BCD,
∴∠1=∠2,∵∠3=∠4,∴∠BFE=∠ACE=90°,∴AF⊥BD.
②解:∵∠ECD=90°,BC= AC=12,DC= EC=5,∴BD=13,
∵S△ABD= AD·BC= BD·AF,∴AF= .
(法2:∵∠ECD=90°,BC= AC=12,DC= EC=5,∴AE=BD=13,BE=7,設(shè)EF=x,
∵∠BFE=90°,∴BF2=BE2-EF2,BF2=AB2-AF2,∴72-x2=288-(13+x)2,
∴x= ,∴AF=13+ = .)
(2)證明:如圖4,∵∠ACB=∠ECD,∴∠ACB+∠ACD=∠ECD+∠ACD,∴∠BCD=∠ACE,
∵AC=BC,∠ACE=∠BCD,EC=DC,∴△ACE≌△BCD,∴∠1=∠2,
∵∠3=∠4,∴∠BFA=∠BCA=90°,∴AF⊥BD.
(3)解:∠AFG=45°.
如圖4,
過點(diǎn)C作CM⊥BD,CN⊥AE,垂足分別為M、N,
∵△ACE≌△BCD,∴S△ACE=S△BCD,AE=BD,∵S△ACE= AE·CN,
S△BCD= BD·CM,∴,
∵CM⊥BD,CN⊥AE,∴CF平分∠BFE,
∵AF⊥BD,∴∠BFE=90°,∴∠EFC=45°,∴∠AFG=45°.
(法2:過點(diǎn)C作CM⊥BD,CN⊥AE,垂足分別為M、N,∵CM⊥BD,CN⊥AE,
∴∠BMC=∠ANC=90°,∵△ACE≌△BCD,∴∠1=∠2,∵∠BMC=∠ANC=90°,∠1=∠2,
AC=BC,∴△BCM≌△ACN,∴CM=CN,∵CM⊥BD,CN⊥AE,∴CF平分∠BFE,
∵AF⊥BD,∴∠BFE=90°,∴∠EFC=45°,∴∠AFG=45°.)
【解析】(1)①由題中標(biāo)志性條件”AC=BC,EC=DC“可證△ACE≌△BCD,對(duì)應(yīng)角相等,進(jìn)而可證出垂直;②利用的結(jié)論轉(zhuǎn)化AE=BD,EC=ED,利用面積法求出AF的長(zhǎng);(2)借鑒(1)的思路方法,仍然證△ACE≌△BCD,進(jìn)而證出AF⊥BD;(3)由(2)的結(jié)論,可根據(jù)面積相等,底邊相等,則高相等,即到角兩邊距離相等的點(diǎn)在這個(gè)角的平分線上,得出CF平分∠BFE,進(jìn)而得出∠AFG=45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題6分)甲、乙兩人進(jìn)行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機(jī)抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機(jī)抽取一張.請(qǐng)用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個(gè)游戲公平嗎?請(qǐng)用概率的知識(shí)加以解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=4,AB=7,
(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;
(2)求DE的長(zhǎng)度;
(3)BE與DF的位置關(guān)系如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),點(diǎn)A是函數(shù) (x<0)圖象上一點(diǎn),AO的延長(zhǎng)線交函數(shù) (x>0,k>0的常數(shù))的圖象于點(diǎn)C,點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)為A′,點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)為C′且點(diǎn)O、A′、C′在同一條直線上,連接CC′,交x軸于點(diǎn)B,連接AB,AA′,A′C′,若△ABC的面積等于6,則由線段AC,CC′,C′A′,A′A所圍成的圖形的面積等于
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,屬于假命題的是( )
A. 三角形的內(nèi)角和等于180°; B. 圓是軸對(duì)稱圖形,任何一條直徑都是圓的對(duì)稱軸;
C. 對(duì)頂角相等; D. 在同一平面內(nèi),垂直于同一條直線的兩條直線相互平行.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種藥原來(lái)每瓶售價(jià)為40元,經(jīng)過兩次降價(jià),現(xiàn)在每瓶售價(jià)為25.6元,則平均每次降價(jià)的百分率是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小麗購(gòu)買學(xué)習(xí)用品的收據(jù)如表,因污損導(dǎo)致部分?jǐn)?shù)據(jù)無(wú)法識(shí)別,根據(jù)下表,解決下列問題:
(1)小麗買了自動(dòng)鉛筆、記號(hào)筆各幾支?
(2)若小麗再次購(gòu)買軟皮筆記本和自動(dòng)鉛筆兩種文具,共花費(fèi)15元,則有哪幾種不同的購(gòu)買方案?
商品名 | 單價(jià)(元) | 數(shù)量(個(gè)) | 金額(元) |
簽字筆 | 3 | 2 | 6 |
自動(dòng)鉛筆 | 1.5 | ● | ● |
記號(hào)筆 | 4 | ● | ● |
軟皮筆記本 | ● | 2 | 9 |
圓規(guī) | 3.5 | 1 | ● |
合計(jì) | 8 | 28 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com