解:∵AD⊥BC,
∴∠ADC=90°,
∵∠C=70°,
∴∠CAD=180°-90°-70°=20°;
∵∠BAC=60°,∠C=70°,
∴∠BAO=30°,∠ABC=50°,
∵BF是∠ABC的角平分線,
∴∠ABO=25°,
∴∠BOA=180°-∠BAO-∠ABO=180°-30°-25°=125°.
故∠CAD,∠BOA的度數(shù)分別是20°,125°.
分析:因為AD是高,所以∠ADC=90°,又因為∠C=70°,所以∠CAD度數(shù)可求;因為∠BAC=60°,∠C=70°,所以∠BAO=30°,∠ABC=50°,BF是∠ABC的角平分線,則∠ABO=25°,故∠BOA的度數(shù)可求.
點評:本題考查了三角形內(nèi)角和定理、角平分線定義.關(guān)鍵是利用角平分線的性質(zhì)解出∠ABO、∠BAO,再運用三角形內(nèi)角和定理求出∠AOB.