14.學(xué)習(xí)了統(tǒng)計(jì)知識(shí)后,小明就本班同學(xué)的上學(xué)方式進(jìn)行了一次調(diào)查統(tǒng)計(jì),他通過(guò)采集數(shù)據(jù)后,繪制一幅不完整的統(tǒng)計(jì)圖(如圖所示).已知騎車的人數(shù)占全班人數(shù)的30%,結(jié)合圖中提供的信息,可得該班步行上學(xué)的有8人.

分析 根據(jù)題意和統(tǒng)計(jì)圖可知騎車的人數(shù)有12人占總數(shù)的30%,從而可以得到調(diào)查的學(xué)生總數(shù),進(jìn)而可以得到步行的學(xué)生人數(shù).

解答 解:由題意可得,
調(diào)查的學(xué)生數(shù)為:12÷30%=40,
故該班步行上學(xué)的學(xué)生有:40-20-12=8(人),
故答案為:8.

點(diǎn)評(píng) 本題考查條形統(tǒng)計(jì)圖,解題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)如圖1,點(diǎn)P是?ABCD內(nèi)的一點(diǎn),分別過(guò)點(diǎn)B、C、D作AP的垂線BE、CF、DH,垂足分別為E、F、H,猜想BE、CF、DH三者之間的關(guān)系,并證明;
(2)如圖2,若點(diǎn)P在?ABCD的外部,△APB的面積為18,△APD的面積為3,求△APC的面積;
(3)如圖3,在(2)的條件下,增加條件:AB=BC,∠APC=ABC=90°,設(shè)AP、BP分別于CD相交于點(diǎn)M、N,當(dāng)DM=CN時(shí),$\frac{CP}{PM}$=$\frac{6\sqrt{2}}{5}$(請(qǐng)直接寫出結(jié)論).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,已知⊙O的直徑AB=3cm,C為⊙O上的一點(diǎn),sinA=$\frac{2}{5}$,則BC=$\frac{6}{5}$ cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.$\sqrt{81}$的平方根是( 。
A.81B.±3C.-3D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.不等式組$\left\{\begin{array}{l}{x+2≤3}\\{\frac{-2x+3}{3}<3}\end{array}\right.$的解集在數(shù)軸上表示為(  )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.正方形ABCD的邊長(zhǎng)為12,在其角上去掉兩個(gè)全等的矩形DMNP和矩形BIJK,DM=IB=2,DP=BK=3,正方形EFGH頂點(diǎn)分別在正方形ABCD的邊上,且EH過(guò)N點(diǎn),則正方形EFGH的邊長(zhǎng)是( 。
A.10B.3$\sqrt{10}$C.4$\sqrt{5}$D.3$\sqrt{10}$或4$\sqrt{5}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在2015年聊城市舉辦的“劃龍舟,慶端午”比賽中,甲、乙兩隊(duì)在比賽時(shí)的路程s(米)與時(shí)間t(分鐘)之間的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖象得到下列結(jié)論,其中錯(cuò)誤的是( 。
A.這次比賽的全程是500米
B.乙隊(duì)先到達(dá)終點(diǎn)
C.比賽中兩隊(duì)從出發(fā)到1.1分鐘時(shí)間段,乙隊(duì)的速度比甲隊(duì)的速度快
D.乙與甲相遇時(shí)乙的速度是375米/分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象,有下列判斷:①b2>4ac,②2a+b=0,③3a+c>0,④4a-2b+c<0;⑤9a+3b+c<0.其中正確的是( 。
A.①②③B.②③④C.①②⑤D.③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在等腰直角三角形ABC中,∠BAC=90°,AC=8$\sqrt{2}$cm,AD⊥BC于點(diǎn)D,點(diǎn)P從點(diǎn)A出發(fā),沿A→C方向以$\sqrt{2}$cm/s的速度運(yùn)動(dòng)到點(diǎn)C停止,在運(yùn)動(dòng)過(guò)程中,過(guò)點(diǎn)P作PQ∥AB交BC于點(diǎn)Q,以線段PQ為邊作等腰直角三角形PQM,且∠PQM=90°(點(diǎn)M,C位于PQ異側(cè)).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s),△PQM與△ADC重疊部分的面積為y(cm2
(1)當(dāng)點(diǎn)M落在AB上時(shí),x=4;
(2)當(dāng)點(diǎn)M落在AD上時(shí),x=$\frac{16}{3}$;
(3)求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案