已知△A1B1C1≌△A2B2C2,且∠A1=60°,∠B1=90°,則∠C2


  1. A.
    90°
  2. B.
    30°
  3. C.
    60°
  4. D.
    70°
B
分析:根據(jù)△A1B1C1≌△A2B2C2,且∠A1=60°,∠B1=90°,利用三角形內(nèi)角和定理求出∠C1即可知∠C2的度數(shù).
解答:∵△A1B1C1≌△A2B2C2,且∠A1=60°,∠B1=90°
∴∠A2=∠A1=60°,∠B2=∠B1=90°
∴∠C1=∠C2=90°-60°=30°
故選B.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)全等三角形的性質(zhì)和三角形內(nèi)角和定理的理解和掌握,難度不大,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△A1B1C1的面積為1,連接△A1B1C1三邊中點(diǎn)得到第二個(gè)△A2B2C2,再順次連接△A2B2C2三邊中點(diǎn)得△A3B3C3,照此下去可得第2009個(gè)三角形,則第2009個(gè)三角形的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、已知△A1B1C1≌△A2B2C2,且∠A1=60°,∠B1=90°,則∠C2為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•威海)如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為(4,0),(8,2),(6,4).已知△A1B1C1的兩個(gè)頂點(diǎn)的坐標(biāo)為(1,3),(2,5),若△ABC與△A1B1C1位似,則△A1B1C1的第三個(gè)頂點(diǎn)的坐標(biāo)為
(3,4)或(0,4)
(3,4)或(0,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為(4,0)(8,2),(6,4).已知△A1B1C1的兩個(gè)頂點(diǎn)的坐標(biāo)為(1,3),(2,5).若△ABC與△A1B1C1位似,則△A1B1C1的第三個(gè)頂點(diǎn)的坐標(biāo)為
(3,4)或(0,4)
(3,4)或(0,4)

(2)在數(shù)學(xué)課上,林老師在黑板上畫出如圖2所示的圖形(其中點(diǎn)B、F、C、E在同一直線上),并寫出四個(gè)條件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.請(qǐng)你從這四個(gè)條件中選出三個(gè)作為題設(shè),另一個(gè)作為結(jié)論,組成一個(gè)真命題,并給予證明.題設(shè):
①②③
①②③
;結(jié)論:
.(均填寫序號(hào))
證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•臺(tái)州)已知△A1B1C1,△A2B2C2的周長相等,現(xiàn)有兩個(gè)判斷:
①若A1B1=A2B2,A1C1=A2C2,則△A1B1C1≌△A2B2C2;
②若∠A1=∠A2,∠B1=∠B2,則△A1B1C1≌△A2B2C2,
對(duì)于上述的兩個(gè)判斷,下列說法正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案