(2000•東城區(qū))已知:如圖,⊙O中直徑AB垂直于弦CD,垂足為E,若AB=10,CD=6,則BE的長(zhǎng)是( )

A.1
B.2
C.3
D.4
【答案】分析:先求出半徑和CE的長(zhǎng)度,再利用勾股定理求出弦心距OE的長(zhǎng),BE就等于半徑與弦心距的差.
解答:解:如圖,連接OC,∵AB=10,
∴半徑OC=10÷2=5,
∵CD=6,
∴CE=6÷2=3,
根據(jù)勾股定理OE===4,
∴BE=5-4=1.
故選A.
點(diǎn)評(píng):本題主要是半徑、弦心距、半弦所構(gòu)成的直角三角形的勾股定理的運(yùn)用,是考查垂徑定理的常考題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2000年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2000•東城區(qū))如圖,在直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(-3,0)、(0,3).
(1)一次函數(shù)圖象上的兩點(diǎn)P、Q在直線AB的同側(cè),且直線PQ與y軸交點(diǎn)的縱坐標(biāo)大于3,若△PAB與△QAB的面積都等于3,求這個(gè)一次函數(shù)的解析式;
(2)二次函數(shù)的圖象經(jīng)過點(diǎn)A、B,其頂點(diǎn)C在x軸的上方且在直線PQ上,求這個(gè)二次函數(shù)的解析式;
(3)若使(2)中所確定的拋物線的開口方向不變,頂點(diǎn)C在直線PQ上運(yùn)動(dòng),當(dāng)點(diǎn)C運(yùn)動(dòng)到點(diǎn)C′時(shí),拋物線在x軸上截得的線段長(zhǎng)為6,求點(diǎn)C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年北京市東城區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•東城區(qū))如圖,在直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(-3,0)、(0,3).
(1)一次函數(shù)圖象上的兩點(diǎn)P、Q在直線AB的同側(cè),且直線PQ與y軸交點(diǎn)的縱坐標(biāo)大于3,若△PAB與△QAB的面積都等于3,求這個(gè)一次函數(shù)的解析式;
(2)二次函數(shù)的圖象經(jīng)過點(diǎn)A、B,其頂點(diǎn)C在x軸的上方且在直線PQ上,求這個(gè)二次函數(shù)的解析式;
(3)若使(2)中所確定的拋物線的開口方向不變,頂點(diǎn)C在直線PQ上運(yùn)動(dòng),當(dāng)點(diǎn)C運(yùn)動(dòng)到點(diǎn)C′時(shí),拋物線在x軸上截得的線段長(zhǎng)為6,求點(diǎn)C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國(guó)中考數(shù)學(xué)試題匯編《數(shù)據(jù)收集與處理》(01)(解析版) 題型:解答題

(2000•東城區(qū))附加題:為保護(hù)環(huán)境,某校環(huán)保小組成員小明收集廢電池,第一天收集1號(hào)電池4節(jié),5號(hào)電池5節(jié),總重量為460克;第二天收集1號(hào)電池2節(jié),5號(hào)電池3節(jié),總重量為240克.
(1)求1號(hào)和5號(hào)電池每節(jié)分別重多少克?
(2)學(xué)校環(huán)保小組為估算四月份收集廢電池的總重量,他們隨意抽取了該月某5天每天收集廢電池的數(shù)量,如下表:
1號(hào)電池(單位:節(jié))2930322831
5號(hào)電池(單位:節(jié))5153474950
分別計(jì)算兩種廢電池的樣本平均數(shù);并由此估算該月(30天)環(huán)保小組收集廢電池的總重量是多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國(guó)中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(01)(解析版) 題型:選擇題

(2000•東城區(qū))下列計(jì)算正確的是( )
A.π=1
B.
C.tan30°=
D.|-a3|2=a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國(guó)中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(01)(解析版) 題型:選擇題

(2000•東城區(qū))如果α是銳角,且cosα=,那么cos(90°-α)的值是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案