等腰直角三角形的外接圓半徑等于(   )

A.腰長             B.腰長的倍;     C.底邊的倍      D.腰上的高

 

【答案】

B

【解析】

試題分析:根據(jù)直角三角形的外心是直角三角形斜邊的中點(diǎn)在結(jié)合等腰直角三角形的性質(zhì)即可求得結(jié)果.

設(shè)等腰直角三角形的腰長為1,

則等腰直角三角形的斜邊長為,外接圓半徑為

故選B.

考點(diǎn):三角形的外心,等腰直角三角形的性質(zhì)

點(diǎn)評:特殊三角形的性質(zhì)的應(yīng)用是初中數(shù)學(xué)平面圖形中極為重要的知識點(diǎn),與各個知識點(diǎn)結(jié)合極為容易,是中考中的熱點(diǎn),在各種題型中均有出現(xiàn),需多加關(guān)注.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

一個半徑為r的圓內(nèi)切于一個等腰直角三角形,另一個半徑為R的圓外接于這個三角形,則
R
r
等于( 。
A、
2
+1
B、
2
-1
C、2
D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

28、操作與探究:
(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖方法折疊,是點(diǎn)A與點(diǎn)C重合,DE為折痕.試證明△CBE等腰三角形;
(2)再將圖①中的△CBE沿對稱軸EF折疊(如圖②).通過折疊,原三角形恰好折成兩個重合的矩形,其中一個是內(nèi)接矩形,另一個是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個組合矩形嗎?如果能折成,請在圖③中畫出折痕;
(3)請你在圖④的方格紙中畫出一個斜三角形,同時滿足下列條件:①折成的組合矩形為正方形;②頂點(diǎn)都在格點(diǎn)(各小正方形的頂點(diǎn))上;
(4)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內(nèi)接矩形的四個頂點(diǎn)分別在原四邊形的四條邊上).請你進(jìn)一步探究,一個非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時,一定能折成組合矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

半徑為R的圓外接于等腰直角三角形ABC,而DABC的內(nèi)切圓半徑為r,則大圓的周長與小圓的周長之比值為(。

A            B           C           D

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

一個半徑為r的圓內(nèi)切于一個等腰直角三角形,另一個半徑為R的圓外接于這個三角形,則數(shù)學(xué)公式等于


  1. A.
    數(shù)學(xué)公式+1
  2. B.
    數(shù)學(xué)公式
  3. C.
    2
  4. D.
    3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一個半徑為r的圓內(nèi)切于一個等腰直角三角形,另一個半徑為R的圓外接于這個三角形,則
R
r
等于( 。
A.
2
+1
B.
2
-1
C.2D.3

查看答案和解析>>

同步練習(xí)冊答案