【題目】數(shù)軸上點(diǎn)A表示﹣4,點(diǎn)B表示2,則表示A,B兩點(diǎn)間的距離的算式是)
A.﹣4+2
B.﹣4﹣2
C.2﹣(﹣4)
D.2﹣4
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明每天上午9時騎自行車離開家,15時回家,他描繪了離家的距與時間的變化情況.
(1)圖象表示哪兩個變量的關(guān)系?哪個是自變量?哪個是因變量?
(2)10時和13時,他分別離家多遠(yuǎn)?
(3)他到達(dá)離家最遠(yuǎn)的地方時什么時間?離家多遠(yuǎn)?
(4)11時到12時他行駛了多少千米?
(5)他由離家最遠(yuǎn)的地方返回的平均速度是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,若a為實(shí)數(shù),則點(diǎn)(2,a2+1)在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交與A(4,0),并且OA=OC=4OB,點(diǎn)P為過A、B、C三點(diǎn)的拋物線上一動點(diǎn).
(1)、求點(diǎn)B、點(diǎn)C的坐標(biāo)并求此拋物線的解析式;
(2)、是否存在點(diǎn)P,使得△ACP是以點(diǎn)C為直角頂點(diǎn)的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)、過動點(diǎn)P作PE垂直于y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)D作x軸的垂線,垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,一個無蓋的長方體盒子的棱長分別為,,,盒子的內(nèi)部頂點(diǎn)處有一只昆蟲甲,在盒子的內(nèi)部頂點(diǎn)處有一只昆蟲乙(盒壁的厚度忽略不計(jì))假設(shè)昆蟲甲在頂點(diǎn)處靜止不動,請計(jì)算處的昆蟲乙沿盒子內(nèi)壁爬行到昆蟲甲處的最短路程,并畫出其最短路徑,簡要說明畫法
(2)如果(1)問中的長方體的棱長分別為,,如圖②,假
設(shè)昆蟲甲從盒內(nèi)頂點(diǎn)以1厘米/秒的速度在盒子的內(nèi)部沿棱向下爬行,同時昆蟲乙從
盒內(nèi)頂點(diǎn)以3厘米/秒的速度在盒壁的側(cè)面上爬行,那么昆蟲乙至少需要多長時間才能捕
捉到昆蟲甲?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,當(dāng)△CEB′為直角三角形時,BE的長為_____ ____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解方程x2﹣4x﹣1=0,方程應(yīng)變形為( )
A.(x+2)2=3
B.(x+2)2=5
C.(x﹣2)2=3
D.(x﹣2)2=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓心都在x軸正半軸上的半圓,半圓,…,半圓與直線L相切設(shè)半圓,半圓,…,半圓的半徑分別是,,…,,則當(dāng)直線L與x軸所成銳角為300,且時,= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com