如圖,在△ABC中,∠CAB=90°,∠CBA=50°,以AB為直徑作⊙O交BC于點D,點E在邊AC上,且滿足ED=EA.(1)求∠DOA的度數(shù); (2)求證:直線ED與⊙O相切.
科目:初中數(shù)學 來源: 題型:
如圖,在△ABC中,AB = AC,∠A = 30°,E為BC延長線上一點,
∠ABC與∠ACE的平分線相交于點D,則∠D的度數(shù)為
A. 15° B. 17.5° C. 20° D. 22.5°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在平面直角坐標系xOy中,將拋物線的對稱軸繞著點P(,2)順時針旋轉45°后與該拋物線交于A、B兩點,點Q是該拋物線上的一點.
(1)求直線AB的函數(shù)表達式;
(2)如圖①,若點Q在直線AB的下方,求點Q到直線AB的距離的最大值;
(3)如圖②,若點Q在y軸左側,且點T(0,t)(t<2)是直線PO上一點,當以P、B、Q為頂點的三角形與△PAT相似時,求所有滿足條件的t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
數(shù)學課上,老師讓學生尺規(guī)作圖畫Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.小明的作法如圖所示,你認為這種作法中判斷∠ACB是直角的依據(jù)是( 。
| A. | 勾股定理 |
| B. | 直徑所對的圓心角是直角 |
| C. | 勾股定理的逆定理 |
| D. | 90°的圓周角所對的弦是直徑 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在△ABC中,AB=5,AC=9,S△ABC=,動點P從A點出發(fā),沿射線AB方向以每秒5個單位的速度運動,動點Q從C點出發(fā),以相同的速度在線段AC上由C向A運動,當Q點運動到A點時,P、Q兩點同時停止運動,以PQ為邊作正方形PQEF(P、Q、E、F按逆時針排序),以CQ為邊在AC上方作正方形QCGH.
(1)求tanA的值;
(2)設點P運動時間為t,正方形PQEF的面積為S,請?zhí)骄縎是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由;
(3)當t為何值時,正方形PQEF的某個頂點(Q點除外)落在正方形QCGH的邊上,請直接寫出t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com