【答案】
分析:(1)如圖,分別過(guò)A、D作AM⊥BC于M,DN⊥CB于N,容易得到AM=DN,AD=MN,而CD=
,∠C=45°,由此可以求出AM=DN,又因?yàn)锳D=5,容易求出BM、CN,若點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為直角梯形,則∠APC=90°或∠DEB=90°,那么P與M重合或E與N重合,即可求出此時(shí)的x的值;
(2)若以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為平行四邊形,那么AD=PE,有兩種情況:①當(dāng)P在E的左邊,利用已知條件可以求出BP的長(zhǎng)度;②當(dāng)P在E的右邊,利用已知條件也可求出BP的長(zhǎng)度;
(3)以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形能構(gòu)成菱形.由(2)知,當(dāng)BP=11時(shí),以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形是平行四邊形,根據(jù)已知條件分別計(jì)算一組鄰邊證明它們相等即可證明它是菱形.
解答:解:(1)如圖,分別過(guò)A、D作AM⊥BC于M,DN⊥CB于N,
則四邊形AMND是矩形,
∴AM=DN,AD=MN=5,
而CD=
,∠C=45°,
∴DN=CN=CD•sin∠C=4
×
=4=AM,
∴BM=CB-CN-MN=3,
若點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為直角梯形,
則∠APC=90°或∠DEB=90°,
當(dāng)∠APC=90°時(shí),
∴P與M重合,
∴BP=BM=3;
當(dāng)∠DPB=90°時(shí),P與N重合,
∴BP=BN=8;
故當(dāng)x的值為3或8時(shí),以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為直角梯形;
(2)若以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為平行四邊形,那么AD=PE,
有兩種情況:①當(dāng)P在E的左邊,
∵E是BC的中點(diǎn),
∴BE=6,
∴BP=BE-PE=6-5=1;
②當(dāng)P在E的右邊,
BP=BE+PE=6+5=11;
故當(dāng)x的值為1或11時(shí),以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為平行四邊形;
(3)由(2)知,①當(dāng)BP=1時(shí),此時(shí)CN=DN=4,NE=6-4=2,
∴DE=
=
=2
≠AD,故不能構(gòu)成菱形.
②當(dāng)BP′=11時(shí),以點(diǎn)P′、A、D、E為頂點(diǎn)的四邊形是平行四邊形
∴EP′=AD=5,
過(guò)D作DN⊥BC于N,
∵CD=
,∠C=45°,
則DN=CN=4,
∴NP′=BP′-BN=BP′-(BC-CN)=11-12+4=3.
∴DP′=
=
=5,
∴EP′=DP′,
故此時(shí)?P′DAE是菱形.
即以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形能構(gòu)成菱形;
點(diǎn)評(píng):本題是一個(gè)開(kāi)放性試題,利用梯形的性質(zhì)、直角梯形的性質(zhì)、平行四邊形的性質(zhì)、菱形的性質(zhì)等知識(shí)來(lái)解決問(wèn)題,要求學(xué)生對(duì)于這些知識(shí)比較熟練,綜合性很強(qiáng).