【題目】如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD上.則sin∠EFG的值為________

【答案】

【解析】試題解析:作EHADH,連接BE、BD,連接AEFGO,如圖,

四邊形ABCD為菱形,A=60°,∴△BDC為等邊三角形,ADC=120°,E點(diǎn)為CD的中點(diǎn),CE=DE=1,BECD,在RtBCE中,BE= CE=,ABCD,BEAB,設(shè)AF=x菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F,G分別在邊AB,AD上,EF=AFFG垂直平分AE,EFG=AFG,在RtBEF中,(2x2+2=x2,解得x=,在RtDEH中,DH=DE=,HE=DH=,在RtAEH中,AE= =,AO=,在RtAOF中,OF= =cosAFO= =.故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:

小明在學(xué)習(xí)了二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如32 (1)2.善于思考的小明進(jìn)行了以下探索:

設(shè)ab(mn)2(其中a,b,m,n均為正整數(shù)),則有abm22n22mn.

am22n2,b2mn.這樣小明就找到了一種把部分形如ab的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:

(1)當(dāng)ab,m,n均為正整數(shù)時(shí),若ab(mn)2,用含m,n的式子分別表示ab,得a__________b__________;

(2)利用所探索的結(jié)論,找一組正整數(shù)a,b,m,n填空:________________(________________)2;

(3)a4(mn)2,且a,m,n均為正整數(shù),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知⊙O分別切ABC的三條邊ABBC、CA于點(diǎn)D、E、F,SABC=10cm2,CABC=10cm且∠C=60°.求:

1O的半徑r

2)扇形OEF的面積(結(jié)果保留π);

3)扇形OEF的周長(zhǎng)(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,P是對(duì)角線AC上的一點(diǎn),點(diǎn)EBC的延長(zhǎng)線上,且PE=PB

1)當(dāng)PC=CE時(shí),求CDP的度數(shù);

2)試用等式表示線段PBBC、CE之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,自變量的取值范圍選取錯(cuò)誤的是

A.y=2x2中,x取全體實(shí)數(shù)

B.y=中,xx≠-1的實(shí)數(shù)

C.y=中,xx≥2的實(shí)數(shù)

D.y=中,xx≥-3的實(shí)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲轉(zhuǎn)盤(pán)被分成3個(gè)面積相等的扇形,乙轉(zhuǎn)盤(pán)被分成4個(gè)面積相等的扇形,每一個(gè)扇形都標(biāo)有相應(yīng)的數(shù)字.同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止后,設(shè)甲轉(zhuǎn)盤(pán)中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為x,乙轉(zhuǎn)盤(pán)中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為y(當(dāng)指針指在邊界線上時(shí),重轉(zhuǎn)一次,直到指針指向一個(gè)區(qū)域?yàn)橹梗?/span>

(1)請(qǐng)你用畫(huà)樹(shù)狀圖或列表格的方法,列出所有等可能情況,并求出點(diǎn)(x,y)落在坐標(biāo)軸上的概率;

(2)直接寫(xiě)出點(diǎn)(x,y)落在以坐標(biāo)原點(diǎn)為圓心,2為半徑的圓內(nèi)的概率為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax 2bxc的頂點(diǎn)為M1,4),與x軸的右交點(diǎn)為A,與y軸的交點(diǎn)為B,點(diǎn)C與點(diǎn)B關(guān)于拋物線的對(duì)稱軸對(duì)稱,且SABC 3

1)求拋物線的解析式;

2)點(diǎn)Dy軸上一點(diǎn),將點(diǎn)DC點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)E,若點(diǎn)E恰好落在拋物線上,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo);

3設(shè)拋物線的對(duì)稱軸與直線AB交于點(diǎn)F,問(wèn):在x軸上是否存在點(diǎn)P,使得以P、A、F為頂點(diǎn)的三角形與△ABC相似?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1955年,印度數(shù)學(xué)家卡普耶卡()研究了對(duì)四位自然數(shù)的一種變換:任給出四位數(shù),用的四個(gè)數(shù)字由大到小重新排列成一個(gè)四位數(shù),再減去它的反序數(shù)(即將的四個(gè)數(shù)字由小到大排列,規(guī)定反序后若左邊數(shù)字有0,則將0去掉運(yùn)算,比如0001,計(jì)算時(shí)按1計(jì)算),得出數(shù),然后繼續(xù)對(duì)重復(fù)上述變換,得數(shù),…,如此進(jìn)行下去,卡普耶卡發(fā)現(xiàn),無(wú)論是多大的四位數(shù),只要四個(gè)數(shù)字不全相同,最多進(jìn)行次上述變換,就會(huì)出現(xiàn)變換前后相同的四位數(shù),這個(gè)數(shù)稱為變換的核.則四位數(shù)9631的變換的核為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC,點(diǎn)EAC,∠AEB=∠ABC.

(1)1,∠BAC的角平分線AD,分別交CB、BED、F兩點(diǎn),求證:∠EFD=∠ADC;

(2)2,△ABC的外角∠BAG的角平分線AD,分別交CB、BE的延長(zhǎng)線于D、F兩點(diǎn),試探究(1)中結(jié)論是否仍成立?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案