精英家教網(wǎng)如圖,在第一象限內(nèi)作與x軸的夾角為30°的射線OC,在射線OC上取一點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得以P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是
 
分析:此題應(yīng)分四種情況考慮:
①∠POQ=∠OAH=60°,此時A、P重合,可聯(lián)立直線OA和拋物線的解析式,即可得A點坐標;
②∠POQ=∠AOH=30°,此時∠POH=60°,即直線OP:y=
3
x,聯(lián)立拋物線的解析式可得P點坐標,進而可求出OQ、PQ的長,由于△POQ≌△AOH,那么OH=OQ、AH=PQ,由此得到點A的坐標.
③當∠OPQ=90°,∠POQ=∠AOH=30°時,此時△QOP≌△AOH;
④當∠OPQ=90°,∠POQ=∠OAH=60°,此時△OQP≌△AOH;
解答:精英家教網(wǎng)解:①當∠POQ=∠OAH=60°,若以P,O,Q為頂點的三角形與△AOH全等,那么A、P重合;
由于∠AOH=30°,
所以直線OA:y=
3
3
x,聯(lián)立拋物線的解析式,
得:
y=
3
3
x
y=x2
,
解得
x=0
y=0
x=
3
3
y=
1
3
;
故A(
3
3
,
1
3
);

②當∠POQ=∠AOH=30°,此時△POQ≌△AOH;
精英家教網(wǎng)
易知∠POH=60°,則直線OP:y=
3
x,聯(lián)立拋物線的解析式,
得:
y=
3
x
y=x2
,
解得
x=0
y=0
,
x=
3
y=3
;
故P(
3
,3),那么A(3,
3
);

③當∠OPQ=90°,∠POQ=∠AOH=30°時,此時△QOP≌△AOH;
精英家教網(wǎng)
易知∠POH=60°,則直線OP:y=
3
x,聯(lián)立拋物線的解析式,
得:
y=
3
x
y=x2
,
解得
x=0
y=0
、
x=
3
y=3

故P(
3
,3),
∴OP=2
3
,QP=2,
∴OH=OP=2
3
,AH=QP=2,
故A(2
3
,2);

④當∠OPQ=90°,∠POQ=∠OAH=60°,此時△OQP≌△AOH;
精英家教網(wǎng)
此時直線OP:y=
3
3
x,聯(lián)立拋物線的解析式,
得:
y=
3
3
x
y=x2
,
解得
x=0
y=0
x=
3
3
y=
1
3
,
∴P(
3
3
1
3
),
∴QP=
2
3
3
,OP=
2
3

∴OH=QP,QP=
2
3
3
,AH=OP=
2
3

故A(
2
3
3
,
2
3
).
綜上可知:符合條件的點A有四個,且坐標為:則符合條件的點A的坐標是 (
3
3
,
1
3
)或(3,
3
)或(2
3
,2)或(
2
3
3
2
3
).
點評:此題主要考查的是全等三角形的判定和性質(zhì)以及函數(shù)圖象交點坐標的求法;由于全等三角形的對應(yīng)頂點不明確,因此要注意分類討論思想的運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在第一象限內(nèi)作射線OC,與x軸的夾角為30°,在射線OC上取一點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取點P,在y軸上取點Q,使得以P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在第一象限內(nèi)作與x軸的夾角為30°的射線OC,在射線OC上取點A,過點A作AH⊥x軸于點H,在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A有
 
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在第一象限內(nèi)作射線OC,與x軸的夾角為30°,在射線OC上取一點A,過點A作AH⊥x軸于點H,得到△AOH.在拋物線y=x2(x>0)上取點P,在y軸上取點Q,使得以P,O,Q為頂點的三角形△POQ與△AOH全等,則符合條件的△AOH的面積是
3
2
3
,2
3
,
1
18
3
,
2
9
3
3
2
3
,2
3
1
18
3
,
2
9
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在第一象限內(nèi)作射線OC,與x軸的夾角為30°,在射線OC上取點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取點P,在y軸上取點Q,使得以P,O,Q為頂點,且以點Q為直角頂點的三角形與△AOH全等,則符合條件的點A的坐標是
(3,
3
),(
1
3
3
,
1
3
(3,
3
),(
1
3
3
,
1
3

查看答案和解析>>

同步練習(xí)冊答案