在平面直角坐標(biāo)系中,已知點(diǎn)A(4,0),點(diǎn)B(0,3).點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度向右平移,點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位的速度向右平移,又P、Q兩點(diǎn)同時(shí)出發(fā).
(1)連接AQ,當(dāng)△ABQ是直角三角形時(shí),求點(diǎn)Q的坐標(biāo);
(2)當(dāng)P、Q運(yùn)動(dòng)到某個(gè)位置時(shí),如果沿著直線AQ翻折,點(diǎn)P恰好落在線段AB上,求這時(shí)∠AQP的度數(shù);
(3)過點(diǎn)A作AC⊥AB,AC交射線PQ于點(diǎn)C,連接BC,D是BC的中點(diǎn).在點(diǎn)P、Q的運(yùn)動(dòng)過程中,是否存在某時(shí)刻,使得以A、C、Q、D為頂點(diǎn)的四邊形是平行四邊形,若存在,試求出這時(shí)tan∠ABC的值;若不存在,試說明理由.

解:(1)根據(jù)題意,可得:A(4,0)、B(0,3),AB=5.
。┊(dāng)∠BAQ=90°時(shí),△AOB∽△BAQ,
.解得;
ⅱ)當(dāng)∠BQA=90°時(shí),BQ=OA=4,
∴Q或Q(4,3).

(2)令點(diǎn)P翻折后落在線段AB上的點(diǎn)E處,
則∠EAQ=∠PAQ,∠EQA=∠PQA,AE=AP,QE=QP;
又BQ∥OP,
∴∠PAQ=∠BQA,∴∠EAQ=∠BQA,
即AB=QB=5.
,
,即點(diǎn)E是AB的中點(diǎn).
過點(diǎn)E作EF⊥BQ,垂足為點(diǎn)F,過點(diǎn)Q作QH⊥OP,垂足為點(diǎn)H,
,∴EF=PH.
又EQ=PQ,∠EFQ=∠PHQ=90°,
∴△EQF≌△PQH
∴∠EQF=∠PQH,從而∠PQE=90°.
∴∠AQP=∠AQE=45°.

(3)當(dāng)點(diǎn)C在線段PQ上時(shí),延長(zhǎng)BQ與AC的延長(zhǎng)線交于點(diǎn)F,
∵AC⊥AB,
∴△AOB∽△FHA.


∵DQ∥AC,DQ=AC,且D為BC中點(diǎn),
∴FC=2DQ=2AC.

在Rt△BAC中,tan∠ABC=;
當(dāng)點(diǎn)C在PQ的延長(zhǎng)線上時(shí),記BQ與AC的交點(diǎn)為F,記AD與BQ的交點(diǎn)為G,
∵CQ∥AD,CQ=AD且D為BC中點(diǎn),
∴AD=CQ=2DG.
∴CQ=2AG=2PQ.
即:CQ:QP=2:1
又∵BQ∥OP
∴CF:AF=CQ:QP=2:1
∴FC=2AF,
又∵FA=,
∴FC=

在Rt△BAC中,tan∠ABC=
分析:(1)由于∠ABQ<90°,若△ABQ是直角三角形,需要考慮兩種情況:
①∠BAQ=90°,此時(shí)△BAQ∽△ABO,根據(jù)相似三角形所得比例線段,可求出BQ的長(zhǎng),即可得到Q點(diǎn)坐標(biāo);
②∠BQA=90°,此時(shí)四邊形BOAQ是矩形,BQ=OA,由此可求出Q點(diǎn)坐標(biāo).
(2)假設(shè)P點(diǎn)翻折到AB上時(shí),落點(diǎn)為E,那么∠QAP=∠QAE,QE=QP;由于BQ∥OP,那么∠QAP=∠BQA=∠BAQ,即BQ=BA=5,此時(shí)P、Q運(yùn)動(dòng)了2.5s,所以AP=AE=,即E是AB的中點(diǎn);分別過E、Q作BQ、OP的垂線,設(shè)垂足為F、H,易求EF=PH=,即可證得△QPH≌△QEF,得∠EQF=∠PQH,由此發(fā)現(xiàn)∠EQP=90°,而∠PQA=∠EQA,由此可求得∠AQP的度數(shù).
(3)假設(shè)存在這樣的平行四邊形,可分作兩種情況考慮:
①點(diǎn)C在線段PQ上,可延長(zhǎng)AC、BQ交于點(diǎn)F,由于DQ∥AC,因此DQ是△BCF的中位線,則FC=2DQ=2AC,過F作FH⊥x軸于H,由于∠BAC=90°,可證得△AOB∽△FHA,通過得到的比例線段,即可求出AF的長(zhǎng),進(jìn)而可得到AC的長(zhǎng);在Rt△BAC中,已知了AC、BA的長(zhǎng),即可求出∠ABC的正切值;
②點(diǎn)C在PQ的延長(zhǎng)線上,設(shè)AD、AC與BQ的交點(diǎn)分別為G、F,按照①的思路可證得AD=CQ=2AG,那么在相似三角形△CFQ和△AFG中,F(xiàn)C=2AF,即AC=3AF,AF的長(zhǎng)在①中已求得,由此可得到AC的長(zhǎng),進(jìn)而可求出∠ABC的正切值.
點(diǎn)評(píng):此題考查的知識(shí)點(diǎn)較多,涉及到圖形的翻折變換、相似三角形及全等三角形的判定和性質(zhì)、三角形中位線定理以及銳角三角函數(shù)的定義等知識(shí),同時(shí)還考查了分類討論的數(shù)學(xué)思想,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、在平面直角坐標(biāo)系中,點(diǎn)P到x軸的距離為8,到y(tǒng)軸的距離為6,且點(diǎn)P在第二象限,則點(diǎn)P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、在平面直角坐標(biāo)系中,點(diǎn)P1(a,-3)與點(diǎn)P2(4,b)關(guān)于y軸對(duì)稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點(diǎn).
(1)請(qǐng)?jiān)偬砑右稽c(diǎn)C,求出圖象經(jīng)過A、B、C三點(diǎn)的函數(shù)關(guān)系式.
(2)反思第(1)小問,考慮有沒有更簡(jiǎn)捷的解題策略?請(qǐng)說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,開口向下的拋物線與x軸交于A、B兩點(diǎn),D是拋物線的頂點(diǎn),O為精英家教網(wǎng)坐標(biāo)原點(diǎn).A、B兩點(diǎn)的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點(diǎn)P,使△APC的面積最大?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo)和△APC的最大面積;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、在平面直角坐標(biāo)系中,把一個(gè)圖形先繞著原點(diǎn)順時(shí)針旋轉(zhuǎn)的角度為θ,再以原點(diǎn)為位似中心,相似比為k得到一個(gè)新的圖形,我們把這個(gè)過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點(diǎn)O順時(shí)針旋轉(zhuǎn)的角度為90°,再以原點(diǎn)為位似中心,相似比為2得到一個(gè)新的圖形△A1B1C1,可以把這個(gè)過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點(diǎn)坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點(diǎn)M的對(duì)應(yīng)點(diǎn)M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊(cè)答案