如圖,△ABC中,∠B=45°,∠C=30°,AC=2,以A為圓心,1為半徑畫⊙A.
(1)判斷直線BC與⊙A的位置關系,并說明理由;
(2)求圖中陰影部分面積(結果保留根號).

解:(1)相切;
證明:連接AD,
∵∠C=30°,AC=2,
∴AD=1,
∵⊙A的半徑為1,
∴AD=r,
∴直線BC與⊙A相切;

(2)∵AD=1,∠B=45°,
∴AD=BD=1,
∴BC=BD+CD=1+
∵∠BAC=∠BAD+∠DAC=45°+60°=105°,
∴S△BAC==(1+),S扇形AEF==π,
∴S陰影=
分析:(1)連接AD,已知條件計算AD的長和圓的半徑1比較大小即可;
(2)有(1)可知AD的長,利用三角形ABC的面積-扇形AEF的面積,即可求出陰影部分面積.
點評:本題考查了切線的判定定理和解直角三角形有關的知識以及陰影部分面積,題目具有一定的綜合性.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案