精英家教網 > 初中數學 > 題目詳情
(2012•濟寧)如圖,在等邊三角形ABC中,D是BC邊上的一點,延長AD至E,使AE=AC,∠BAE的平分線交△ABC的高BF于點O,則tan∠AEO=
3
3
3
3
分析:根據等邊三角形性質和三線合一定理求出∠BAF=60°,推出AB=AE,根據SAS證△BAO≌△EAO,推出∠AEO=∠ABO=30°即可.
解答:解:∵△ABC是等邊三角形,
∠ABC=60°,AB=BC,
∵BF⊥AC,
∴∠ABF=
1
2
∠ABC=30°,
∵AB=AC,AE=AC,
∴AB=AE,
∵AO平分∠BAE,
∴∠BAO=∠EAO,
∵在△BAO和△EAO中
AB=AE
∠BAO=∠EAO
AO=AO
,
∴△BAO≌△EAO,
∴∠AEO=∠ABO=30°,
∴tan∠AEO=tan30°=
3
3

故答案為:
3
3
點評:本題考查了等邊三角形性質,全等三角形的性質和判定,特殊角的三角函數值等知識點的應用,關鍵是證出∠AEO=∠ABO,題目比較典型,難度適中.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•濟寧)如圖,在平面直角坐標系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋轉得到的.
(1)請寫出旋轉中心的坐標是
O(0,0)
O(0,0)
,旋轉角是
90
90
度;
(2)以(1)中的旋轉中心為中心,分別畫出△A1AC1順時針旋轉90°、180°的三角形;
(3)設Rt△ABC兩直角邊BC=a、AC=b、斜邊AB=c,利用變換前后所形成的圖案證明勾股定理.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•濟寧)如圖,將矩形ABCD的四個角向內折起,恰好拼成一個無縫隙無重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•濟寧)如圖,是由若干個完全相同的小正方體組成的一個幾何體的主視圖和左視圖,則組成這個幾何體的小正方體的個數是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•濟寧)如圖,在平面直角坐標系中,點P坐標為(-2,3),以點O為圓心,以OP的長為半徑畫弧,交x軸的負半軸于點A,則點A的橫坐標介于( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•濟寧)如圖,拋物線y=ax2+bx-4與x軸交于A(4,0)、B(-2,0)兩點,與y軸交于點C,點P是線段AB上一動點(端點除外),過點P作PD∥AC,交BC于點D,連接CP.
(1)求該拋物線的解析式;
(2)當動點P運動到何處時,BP2=BD•BC;
(3)當△PCD的面積最大時,求點P的坐標.

查看答案和解析>>

同步練習冊答案