【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)A、B兩點(diǎn),菱形ABCD在第一象限內(nèi),邊BC于x軸平行.若A、B兩點(diǎn)的縱坐標(biāo)分別為3和1,則菱形ABCD的面積為(
A.2
B.4
C.2
D.4

【答案】D
【解析】解:∵點(diǎn)A、B在反比例函數(shù)y= 的圖象上,且A,B兩點(diǎn)的縱坐標(biāo)分別為3、1, ∴點(diǎn)A(1,3),點(diǎn)B(3,1),
∴AB= =2
∵四邊形ABCD為菱形,BC與x軸平行,
∴BC=AB=2 ,
∴S菱形ABCD=BC(yA﹣yB)=2 ×(3﹣1)=4
故選D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解比例系數(shù)k的幾何意義的相關(guān)知識(shí),掌握幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積,以及對(duì)菱形的性質(zhì)的理解,了解菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在四邊形ABCD中,∠D=90°,∠ABC=∠BCD,點(diǎn)E在直線BC上,點(diǎn)F在直線CD上,且∠AEB=∠CEF.

(1)如圖20①,若AE平分∠BAD,求證:EF⊥AE;

(2)如圖20②,若AE平分四邊形ABCD的外角,其余條件不變,則(1)中的結(jié)論是否仍然成立?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列一段文字,然后回答問(wèn)題.

已知在平面內(nèi)兩點(diǎn)P1(x1,y1)、P2(x2,y2),其兩點(diǎn)間的距離P1P2=,同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間距離公式可簡(jiǎn)化為|x2﹣x1|或|y2﹣y1|.

(1)已知A(2,4)、B(-3,-8),試求A、B兩點(diǎn)間的距離;

(2)已知A、B在平行于y軸的直線上,點(diǎn)A的縱坐標(biāo)為4,點(diǎn)B的縱坐標(biāo)為-1,試求A、B兩點(diǎn)間的距離;

(3)已知一個(gè)三角形各頂點(diǎn)坐標(biāo)為D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形狀嗎?說(shuō)明理由;

(4)平面直角坐標(biāo)中,在x軸上找一點(diǎn)P,使PD+PF的長(zhǎng)度最短,求出點(diǎn)P的坐標(biāo)以及PD+PF的最短長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B,E在線段CD,∠C=∠D,則添加下列條件,不一定能使△ABC≌△EFD的是( )

A. BC=FD,AC=ED B. ∠A=∠DEF,AC=ED

C. AC=ED,AB=EF D. ∠ABC=∠EFD,BC=FD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】騎自相車旅行越來(lái)越受到人們的喜愛,順風(fēng)車行經(jīng)營(yíng)的A型車2016年4月份銷售總額為3.2萬(wàn)元,今年經(jīng)過(guò)改造升級(jí)后A型車每輛銷售比去年增加400元,若今年4月份與去年4月份賣出的A型車數(shù)量相同,則今年4月份A型車銷售總額將比去年4月份銷售總額增加25%. A、B兩種型號(hào)車的進(jìn)貨和銷售價(jià)格如表:

A型車

B型車

進(jìn)貨價(jià)格(元/輛)

1100

1400

銷售價(jià)格(元/輛)

今年的銷售價(jià)格

2400


(1)求今年4月份A型車每輛銷售價(jià)多少元(用列方程的方法解答);
(2)該車行計(jì)劃5月份新進(jìn)一批A型車和B型車共50輛,且B型車的進(jìn)貨數(shù)量不超過(guò)A型車數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】三張撲克牌的牌面如圖所示,這三張撲克牌除牌面不同外,其它均相同.將這三張撲克牌背面朝上洗勻,從中隨機(jī)抽出一張,記下數(shù)字后放回;重新洗勻后從中再隨機(jī)抽出一張,記下數(shù)字.請(qǐng)用畫樹狀圖(或列表)的方法,求抽出的兩張撲克牌上的數(shù)字之和是9的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知數(shù)軸上A、B兩點(diǎn)所表示的數(shù)分別為-2和8.

(1)求線段AB的長(zhǎng);

(2)若P為射線BA上的一點(diǎn)(點(diǎn)P不與A、B兩點(diǎn)重合,MPA的中點(diǎn),NPB的中點(diǎn),當(dāng)點(diǎn)P在射線BA上運(yùn)動(dòng)時(shí);MN的長(zhǎng)度是否發(fā)生改變?若不變,請(qǐng)你畫出圖形,并求出線段MN的長(zhǎng);若改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,點(diǎn)P為邊BC上異于BC的任意一點(diǎn),過(guò)點(diǎn)PPD⊥ABD,PE⊥ACE,過(guò)點(diǎn)CCF⊥ABF,求證:PD+PE=CF.

(1)有下面兩種證明思路:(一)如圖,連接AP,由△ABP△ACP面積之和等于△ABC的面積證得PD+PE=CF.(二)如圖,過(guò)點(diǎn)PPG⊥CF,垂足為G,可以證明:PD=GF,PE=CG,則PD+PE=CF.

請(qǐng)你選擇其中的一種證明思路完成證明:

(2)探究:如圖,當(dāng)點(diǎn)PBC的延長(zhǎng)線上時(shí),其它條件不變,探究并證明PD、PECF間的數(shù)量關(guān)系;

(3)猜想:當(dāng)點(diǎn)PCB的延長(zhǎng)線上時(shí),其它條件不變,猜想PD、PECF間的數(shù)量關(guān)系(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲,乙兩輛汽車分別從A,B兩地同時(shí)出發(fā),沿同一條公路相向而行,乙車出發(fā)2h后休息,與甲車相遇后,繼續(xù)行駛.設(shè)甲,乙兩車與B地的路程分別為 y(km),y(km),甲車行駛的時(shí)間為x(h),y,yx之間的函數(shù)圖象如圖所示,結(jié)合圖象解答下列問(wèn)題:

(1)a=   ;

(2)求乙車與甲車相遇后yx的函數(shù)解析式,并寫出自變量x的取值范圍;

(3)若ax5,則當(dāng)x為何值時(shí),兩車相距100km.

查看答案和解析>>

同步練習(xí)冊(cè)答案