)如圖,在△ABC中,∠ABC=90°,D是邊AC上的一點(diǎn),連接BD,使∠A=2∠1,E是BC上的一點(diǎn),以BE為直徑的⊙O經(jīng)過點(diǎn)D.
(1)求證:AC是⊙O的切線;
(2)若∠A=60°,⊙O的半徑為2,求陰影部分的面積.(結(jié)果保留根號(hào)和π)
考點(diǎn): 切線的判定;扇形面積的計(jì)算.
專題: 幾何綜合題;壓軸題.
分析: (1)由OD=OB得∠1=∠ODB,則根據(jù)三角形外角性質(zhì)得∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,所以∠DOC=∠A,由于∠A+∠C=90°,所以∠DOC+∠C=90°,則可根據(jù)切線的判定定理得到AC是⊙O的切線;
(2)解:由∠A=60°得到∠C=30°,∠DOC=60°,根據(jù)含30度的直角三角形三邊的關(guān)系得CD=OD=2,然后利用陰影部分的面積=S△COD﹣S扇形DOE
和扇形的面積公式求解.
解答: (1)證明:∵OD=OB,
∴∠1=∠ODB,
∴∠DOC=∠1+∠ODB=2∠1,
而∠A=2∠1,
∴∠DOC=∠A,
∵∠A+∠C=90°,
∴∠DOC+∠C=90°,
∴OD⊥DC,
∴AC是⊙O的切線;
(2)解:∵∠A=60°,
∴∠C=30°,∠DOC=60°,
在Rt△DOC中,OD=2,
∴CD=OD=2,
∴陰影部分的面積=S△COD﹣S扇形DOE
=×2×2﹣
=2﹣.
點(diǎn)評(píng): 本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了扇形面積的計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中點(diǎn),ED的延長(zhǎng)線與CB的延長(zhǎng)線交于點(diǎn)F.
(1)求證:FD2=FB•FC;
(2)若G是BC的中點(diǎn),連接GD,GD與EF垂直嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在兩個(gè)同心圓中,四條直徑把大圓分成八等份,若往圓面投擲飛鏢,則飛鏢落在黑色區(qū)域的概率 飛鏢落在白色區(qū)域的概率.(填“>”“=”“<”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購(gòu)買飲料,每種飲料被選中的可能性相同.
(1)若他去買一瓶飲料,則他買到奶汁的概率是 ;
(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請(qǐng)用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
觀察下列圖形,則第n個(gè)圖形中三角形的個(gè)數(shù)是( 。
A. 2n+2 B. 4n+4 C. 4n﹣4 D. 4n
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com