如圖, 二次函數(shù)的圖像與軸、軸的交點分別為AB,點C在這個二次函數(shù)的圖像上,且∠ABC=90º,∠CAB=∠BAO,.  

(1)求點A的坐標;     (2)求這個二次函數(shù)的解析式.

解:(1)二次函數(shù)的圖像軸的交點為B(0,2),

        在Rt△AOB中,∵OB=2,

        ∴OA=4,∴點A的坐標(4,0).

(2)過點CCD軸,垂足為D

∵∠CDB=∠ABC=∠AOB=90º,

∴∠CBD=180º–∠ABC–∠ABO=90º–∠ABO=∠BAO

    ∴△CDB∽△BOA,

    ∵∠CAB=∠BAO,∴,

    ∴

    ∴OC=1,BD=2,∴OD=4.∴C(1,4).

∵點A、C在二次函數(shù)的圖像上,

∴二次函數(shù)解析式為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知在直角坐標平面內,點A的坐標為(3,0),第一象限內的點P在直線y=2x上,∠PAO=45度.精英家教網
(1)求點P的坐標;
(2)如果二次函數(shù)的圖象經過P、O、A三點,求這個二次函數(shù)的解析式,并寫出它的圖象的頂點坐標M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,二次函數(shù)的拋物線的頂點坐標C,與x軸的交于A(1,0)、B(-3,0)兩點,與y軸交于點D(0,3)

1.求這個拋物線的解析式

2.如圖②,過點A的直線與拋物線交于點E,交軸于點F,其中點E的橫坐標為-2,若直線為拋物線的對稱軸,點G為直線上的一動點,則軸上是否存在一點H,使四點所圍成的四邊形周長最小,若存在,求出這個最小值及點G、H的坐標;若不存在,請說明理由;

3.如圖③,連接AC交y軸于M,在x軸上是否存在點P,使以P、C、M為頂點的三角形與△AOM相似?若存在,求出點P的坐標;若不存在,請說明理由.

圖①                                     圖②

圖③

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年北京市華夏女子中學九年級第一學期期中考試數(shù)學卷 題型:解答題

如圖是二次函數(shù)的圖象,其頂點坐標為M(1,-4).

【小題1】(1)求出圖象與軸的交點A,B的坐標;
【小題2】(2)在二次函數(shù)的圖象上是否存在點P,使,若存在,求出P點的坐標;若不存在,請說明理由;
【小題3】(3)將二次函數(shù)的圖象在軸下方的部分沿軸翻折,圖象的其余部分保持不變,得到一個新的圖象,請你結合這個新的圖象回答:當直線與此圖象有兩個公共點時,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年上海市中考數(shù)學模擬試卷(二)(解析版) 題型:解答題

如圖,已知在直角坐標平面內,點A的坐標為(3,0),第一象限內的點P在直線y=2x上,∠PAO=45度.
(1)求點P的坐標;
(2)如果二次函數(shù)的圖象經過P、O、A三點,求這個二次函數(shù)的解析式,并寫出它的圖象的頂點坐標M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年上海市浦東新區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

如圖,已知在直角坐標平面內,點A的坐標為(3,0),第一象限內的點P在直線y=2x上,∠PAO=45度.
(1)求點P的坐標;
(2)如果二次函數(shù)的圖象經過P、O、A三點,求這個二次函數(shù)的解析式,并寫出它的圖象的頂點坐標M;
(3)如果將第(2)小題中的二次函數(shù)的圖象向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

同步練習冊答案