【題目】已知方程+px+q=0的兩個(gè)根是,,那么+=-p, =q,反過來,如果+=-p, =q,那么以,為兩根的一元二次方程是+px+q=0.請(qǐng)根據(jù)以上結(jié)論,解決下列問題:
(1)已知關(guān)于x的方程+mx+n=0(n≠0),求出—個(gè)一元二次方程,使它的兩根分別是已知方程兩根的倒數(shù).
(2)已知a、b滿足-15a-5=0,-15b-5=0,求的值.
(3)已知a、b、c均為實(shí)數(shù),且a+b+c=0,abc=16,求正數(shù)c的最小值
【答案】(1)ny2+my+1=0;(2)-47或2;(3)c的最小值為4.
【解析】
(1)先設(shè)方程x2+mx+n=0,(n≠0)的兩個(gè)根分別是x1,x2,得出+=﹣=,再根據(jù)這個(gè)一元二次方程的兩個(gè)根分別是已知方程兩根的倒數(shù),即可求出答案.
(2)分兩種情況討論:①當(dāng)a≠b時(shí),根據(jù)a、b滿足a2﹣15a﹣5=0,b2﹣15b﹣5=0,得出a,b是x2﹣15x﹣5=0的解,求出a+b和ab的值,即可求出的值;②當(dāng)a=b時(shí),直接得出答案.
(3)根據(jù)a+b+c=0,abc=16,得出a+b=﹣c,ab=,a、b是方程x2+cx+=0的解,再根據(jù)c2﹣4≥0,即可求出c的最小值.
(1)設(shè)方程x2+mx+n=0,(n≠0)的兩個(gè)根分別是x1,x2,則:+==﹣==,若一個(gè)一元二次方程的兩個(gè)根分別是已知方程兩根的倒數(shù),則這個(gè)一元二次方程是:y2+y+=0,整理得:ny2+my+1=0;
(2)分兩種情況討論:①當(dāng)a≠b時(shí),∵a、b滿足a2﹣15a﹣5=0,b2﹣15b﹣5=0,∴a,b是x2﹣15x﹣5=0的解,∴a+b=15,ab=﹣5,∴====﹣47.
②當(dāng)a=b時(shí),原式=2;
(3)∵a+b+c=0,abc=16,∴a+b=﹣c,ab=,∴a、b是方程x2+cx+=0的解,∴c2﹣4≥0,c2﹣≥0.
∵c是正數(shù),∴c3﹣43≥0,c3≥43,c≥4,∴正數(shù)c的最小值是4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方形ABCD中,AB=6,BC=2,直線l是長(zhǎng)方形ABCD的一條對(duì)稱軸,且分別與AD,BC交于點(diǎn)E,F,若直線l上的動(dòng)點(diǎn)P,使得△PAB和△PBC均為等腰三角形.則動(dòng)點(diǎn)P的個(gè)數(shù)有_______個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,D為BC上一點(diǎn),BE=CD,CF=BD,那么∠EDF等于( )
A.90°﹣∠AB.90°﹣∠AC.45°﹣∠AD.180°﹣∠A
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠C>∠B,AD,AE分別是△ABC的高和角平分線.
(1)若∠B=30°,∠C=50°,求∠DAE的度數(shù);
(2)∠DAE與∠C-∠B有何關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形網(wǎng)格上有6個(gè)三角形:①△ABC;②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EFK.其中②~⑥中與①相似的是( )
A. ②③④ B. ③④⑤ C. ④⑤⑥ D. ②③⑥
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=AD,∠C=120°,點(diǎn)E在⊙O上.
(1)求∠AED的度數(shù);
(2)若⊙O的半徑為2,則的長(zhǎng)為多少?
(3)連接OD,OE,當(dāng)∠DOE=90°時(shí),AE恰好是⊙O的內(nèi)接正n邊形的一邊,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB=AC,∠BCA=65°,作CD∥AB,并與○O相交于點(diǎn)D,連接BD,則∠DBC的大小為
A. 15° B. 35° C. 25° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD中,∠MAN=45°,連接BD與AM,AN分別交于E,F(xiàn)點(diǎn),則下列結(jié)論正確的有_____.
①M(fèi)N=BM+DN
②△CMN的周長(zhǎng)等于正方形ABCD的邊長(zhǎng)的兩倍;
③EF2=BE2+DF2;
④點(diǎn)A到MN的距離等于正方形的邊長(zhǎng)
⑤△AEN、△AFM都為等腰直角三角形.
⑥S△AMN=2S△AEF
⑦S正方形ABCD:S△AMN=2AB:MN
⑧設(shè)AB=a,MN=b,則≥2﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,平分交于點(diǎn).
(1)如圖①,若于點(diǎn),,求的度數(shù);
(2)如圖②,若交于點(diǎn),求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com