將8個(gè)邊長(zhǎng)為1的正方形拼成如圖(1)形狀,要求過(guò)點(diǎn)P作一條直線l將該圖形分割成面積相等的兩部分.
(1)在圖(1)中畫(huà)出直線l的大致位置;
(2)計(jì)算直線l與直線AB所成的夾角(銳角)的正切值.
【答案】分析:(1)由于整個(gè)圖形是由8個(gè)面積為1的正方形拼成,那么直線l將圖形分成的兩部分的面積都應(yīng)該是4;可設(shè)直線l分別與CD、AB交于點(diǎn)G、Q,設(shè)MG=x,易證得△MGP∽△NQP,且相似比為1:2,則QN=2x,可用x表示出GC、BQ的長(zhǎng),進(jìn)而可表示出梯形GCBQ的面積,由于梯形的面積為4,即可求得x的值,由此可確定作圖方案.
(2)利用(1)中所求線段得出tan∠GQN=tan∠MGP=求出即可.
解答:解:(1)在CD上取一點(diǎn)G,使得CG=過(guò)G、P作直線,那么直線GP就是所求的直線l;
理由如下:如圖,設(shè)MG=x;
∵M(jìn)G∥NQ,
∴△MPG∽△NPQ,
∴MP:PN=MG:QN=1:2,即QN=2MG=2x;
∴GC=1-x,BQ=2x+1;
S梯形GCBQ=(GC+BQ)×BC=×3×(1-x+2x+1)=+3;
由于S梯形=×8=4,即+3=4,解得x=,
∴GC=CM-MG=

(2)∵∠GQN=∠MGP,
∴直線l與直線AB所成的夾角(銳角)的正切值為:
tan∠GQN=tan∠MGP===
點(diǎn)評(píng):此題主要考查的是圖形面積的求法以及相似三角形的性質(zhì),要學(xué)會(huì)綜合運(yùn)用所學(xué)知識(shí)來(lái)解答此類題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•豐臺(tái)區(qū)一模)我們把函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo)稱為這個(gè)函數(shù)的零點(diǎn).如函數(shù)y=2x+1的圖象與x軸交點(diǎn)的坐標(biāo)為(-
1
2
,0),所以該函數(shù)的零點(diǎn)是-
1
2

(1)函數(shù)y=x2+4x-5的零點(diǎn)是
-5或1
-5或1
;
(2)如圖,將邊長(zhǎng)為1的正方形ABCD放置在平面直角坐標(biāo)系xOy中,且頂點(diǎn)A在x軸上.若正方形ABCD沿x軸正方向滾動(dòng),即先以頂點(diǎn)A為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)B落在x軸上時(shí),再以頂點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù).頂點(diǎn)D的軌跡是一函數(shù)的圖象,則該函數(shù)在其兩個(gè)相鄰零點(diǎn)間的圖象與x軸所圍區(qū)域的面積為
π+1
π+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年北京市豐臺(tái)區(qū)中考一?荚嚁(shù)學(xué)試卷(帶解析) 題型:填空題

我們把函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo)稱為這個(gè)函數(shù)的零點(diǎn).如函數(shù)的圖象與x軸交點(diǎn)的坐標(biāo)為(,0),所以該函數(shù)的零點(diǎn)是.

(1)函數(shù)的零點(diǎn)是            ;
(2)如圖,將邊長(zhǎng)為1的正方形ABCD放置在平面直角坐標(biāo)系xOy中,且頂點(diǎn)Ax軸上.若正方形ABCD沿軸正方向滾動(dòng),即先以頂點(diǎn)A 為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)B落在軸上時(shí),再以頂點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù).頂點(diǎn)D的軌跡是一函數(shù)的圖象,則該函數(shù)在其兩個(gè)相鄰零點(diǎn)間的圖象與軸所圍區(qū)域的面積為         .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年北京市豐臺(tái)區(qū)中考一?荚嚁(shù)學(xué)試卷(解析版) 題型:填空題

我們把函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo)稱為這個(gè)函數(shù)的零點(diǎn).如函數(shù)的圖象與x軸交點(diǎn)的坐標(biāo)為(,0),所以該函數(shù)的零點(diǎn)是.

(1)函數(shù)的零點(diǎn)是            ;

(2)如圖,將邊長(zhǎng)為1的正方形ABCD放置在平面直角坐標(biāo)系xOy中,且頂點(diǎn)Ax軸上.若正方形ABCD沿軸正方向滾動(dòng),即先以頂點(diǎn)A 為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)B落在軸上時(shí),再以頂點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù).頂點(diǎn)D的軌跡是一函數(shù)的圖象,則該函數(shù)在其兩個(gè)相鄰零點(diǎn)間的圖象與軸所圍區(qū)域的面積為         .

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

我們把函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo)稱為這個(gè)函數(shù)的零點(diǎn).如函數(shù)y=2x+1的圖象與x軸交點(diǎn)的坐標(biāo)為(-數(shù)學(xué)公式,0),所以該函數(shù)的零點(diǎn)是-數(shù)學(xué)公式
(1)函數(shù)y=x2+4x-5的零點(diǎn)是______;
(2)如圖,將邊長(zhǎng)為1的正方形ABCD放置在平面直角坐標(biāo)系xOy中,且頂點(diǎn)A在x軸上.若正方形ABCD沿x軸正方向滾動(dòng),即先以頂點(diǎn)A 為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)B落在x軸上時(shí),再以頂點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù).頂點(diǎn)D的軌跡是一函數(shù)的圖象,則該函數(shù)在其兩個(gè)相鄰零點(diǎn)間的圖象與x軸所圍區(qū)域的面積為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年北京市豐臺(tái)區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:填空題

我們把函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo)稱為這個(gè)函數(shù)的零點(diǎn).如函數(shù)y=2x+1的圖象與x軸交點(diǎn)的坐標(biāo)為(-,0),所以該函數(shù)的零點(diǎn)是-
(1)函數(shù)y=x2+4x-5的零點(diǎn)是    ;
(2)如圖,將邊長(zhǎng)為1的正方形ABCD放置在平面直角坐標(biāo)系xOy中,且頂點(diǎn)A在x軸上.若正方形ABCD沿x軸正方向滾動(dòng),即先以頂點(diǎn)A 為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)B落在x軸上時(shí),再以頂點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù).頂點(diǎn)D的軌跡是一函數(shù)的圖象,則該函數(shù)在其兩個(gè)相鄰零點(diǎn)間的圖象與x軸所圍區(qū)域的面積為   

查看答案和解析>>

同步練習(xí)冊(cè)答案