四邊形ABCD中,對角線AC與BD交于點O,下列條件不能判定這個四邊形是平行四邊形的是( 。

 

A.

OA=OC,OB=OD

B.

AD∥BC,AB∥DC

C.

AB=DC,AD=BC

D.

AB∥DC,AD=BC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:
①abc<0  ②b<a+c  ③4a+2b+c>0  ④2c<3b  ⑤a+b<m(am+b),(m≠1的實數(shù))
其中正確的結(jié)論的有(  )

A.1個           B.2個             C.3個               D.4個

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


一個數(shù)的相反數(shù)是3,則這個數(shù)是( 。

   A. ﹣        B.       C. ﹣3        D.  3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,二次函數(shù)y=ax2+bx+c(a>0)圖象的頂點為D,其圖象與x軸的交點A、B的橫坐標(biāo)分別為﹣1,3.與y軸負半軸交于點C,在下面五個結(jié)論中:

①2a﹣b=0;②a+b+c>0;③c=﹣3a;④只有當(dāng)a=時,△ABD是等腰直角三角形;⑤使△ACB為等腰三角形的a值可以有四個.

其中正確的結(jié)論是  .(只填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知AB是⊙O的直徑,BC是⊙O的弦,弦ED⊥AB于點F,交BC于點G,過點C的直線與ED的延長線交于點P,PC=PG.

(1)求證:PC是⊙O的切線;

(2)當(dāng)點C在劣弧AD上運動時,其他條件不變,若BG2=BF•BO.求證:點G是BC的中點;

(3)在滿足(2)的條件下,AB=10,ED=4,求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,四邊形ABCD中,AD∥BC,∠B=90°,E為AB上一點,分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處.若AD=3,BC=5,則EF的值是( 。

 

A.

B.

2

C.

D.

2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


計算:(﹣1)3++(﹣1)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在△ABC中,點D,E,F(xiàn)分別在邊AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,則的值為(  )

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知,四邊形ABCD是正方形,點P在直線BC上,點G在直線AD上(P、G不與正方形頂點重合,且在CD的同側(cè)),PD=PG,DF⊥PG于點H,交直線AB于點F,將線段PG繞點P逆時針旋轉(zhuǎn)90°得到線段PE,連結(jié)EF.

(1)如圖1,當(dāng)點P與點G分別在線段BC與線段AD上時.

①求證:DG=2PC;

②求證:四邊形PEFD是菱形;

(2)如圖2,當(dāng)點P與點G分別在線段BC與線段AD的延長線上時,請猜想四邊形PEFD是怎樣的特殊四邊形,并證明你的猜想.

 


查看答案和解析>>

同步練習(xí)冊答案