如圖,直線(xiàn)OC,BC的函數(shù)關(guān)系式分別y1=x和y2=-x+6,動(dòng)點(diǎn)P(x,0)在OB上運(yùn)動(dòng)(0<x<6),過(guò)點(diǎn)P作直線(xiàn)m與x軸垂直.
(1)求點(diǎn)C的坐標(biāo),并回答當(dāng)x取何值時(shí)y1>y2?
(2)猜想△COB是什么三角形?并用所學(xué)的幾何知識(shí)證明你的結(jié)論.
(3)設(shè)在△COB中位于直線(xiàn)m左側(cè)部分的面積為S,求出S與x之間函數(shù)關(guān)系式?
分析:(1)由于C是直線(xiàn)OC、BC的交點(diǎn),根據(jù)它們的解析式即可求出坐標(biāo),然后根據(jù)圖象和交點(diǎn)坐標(biāo)可以求出當(dāng)x取何值時(shí)y1>y2;
(2)由直線(xiàn)OC的解析式為:y1=x,即可求得∠COB的度數(shù),由BC的函數(shù)關(guān)系式為y2=-x+6,即可求得點(diǎn)B的坐標(biāo),由兩點(diǎn)式,可求得OC與BC的長(zhǎng),則可證得△COB的形狀;
(3)此小題有兩種情況:①當(dāng)0<x≤3,此時(shí)直線(xiàn)m左側(cè)部分是△PQO,由于P(x,0)在OB上運(yùn)動(dòng),所以PQ,OP都可以用x表示,所以s與x之間函數(shù)關(guān)系式即可求出;②當(dāng)3<x<6,此時(shí)直線(xiàn)m左側(cè)部分是四邊形OPQC,可以先求出右邊的△PQB的面積,然后即可求出左邊的面積,而△PQO的面積可以和①一樣的方法求出.
解答:解:(1)由題意得:
y=x
y=-x+6
,
解得:
x=3
y=3
,
∴點(diǎn)C的坐標(biāo)為(3,3);
當(dāng)x>3時(shí)y1>y2;

(2)△COB是等腰直角三角形.
證明:∵直線(xiàn)BC的解析式為:y2=-x+6,
∴B(0,6),
∵直線(xiàn)OC的解析式為:y1=x,
∴∠COB=45°,
∴OC=
32+32
=3
2
,BC=
(3-0)2+(3-6)2
=3
2
,
∴OC=BC,
∴∠OBC=∠COB=45°,
∴∠OCB=90°,
∴△COB是等腰直角三角形;

(3)如圖,過(guò)C作CD⊥x軸于點(diǎn)D,
則D(3,0),
①當(dāng)0<x≤3時(shí),此時(shí)直線(xiàn)m左側(cè)部分是△PQO,
∵P(x,0),
∴OP=x,
而Q在直線(xiàn)y1=x上,
∴PQ=x,
∴s=
1
2
x2(0<x≤3);
②當(dāng)3<x<6時(shí),此時(shí)直線(xiàn)m左側(cè)部分是四邊形OPQC,
∵P(x,0),
∴OP=x,
∴PB=OB-OP=6-x,
而Q在直線(xiàn)y2=-x+6上,
∴PQ=-x+6,
∴S=S△BOC-S△PBQ=
1
2
×CD×OB-
1
2
×BP×PQ=
1
2
×3×6-
1
2
×(6-x)×(-x+6)=-
1
2
x2+6x-9(3<x<6).
點(diǎn)評(píng):此題考查了一次函數(shù)的交點(diǎn)問(wèn)題、等腰直角三角形的判定以及面積問(wèn)題.此題難度較大,注意掌握數(shù)形結(jié)合思想、分類(lèi)討論思想與方程思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線(xiàn)OC、BC的函數(shù)關(guān)系式分別是y1=x和y2=-2x+6,直線(xiàn)BC與x軸交于點(diǎn)B,直線(xiàn)BA與直線(xiàn)OC相精英家教網(wǎng)交于點(diǎn)A.
(1)當(dāng)x取何值時(shí)y1>y2?
(2)當(dāng)直線(xiàn)BA平分△BOC的面積時(shí),求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線(xiàn)OC、BC的函數(shù)關(guān)系式分別是y1=x和y2=-2x+6,動(dòng)點(diǎn)P(x,0)在OB上運(yùn)動(dòng)(0<x<3),過(guò)點(diǎn)P作直線(xiàn)m與x軸垂直.
(1)求點(diǎn)C的坐標(biāo),并回答當(dāng)x取何值時(shí)y1>y2?
(2)設(shè)△COB中位于直線(xiàn)m左側(cè)部分的面積為s,求出s與x之間函數(shù)關(guān)系式.
(3)當(dāng)x為何值時(shí),直線(xiàn)m平分△COB的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線(xiàn)OC、BC的函數(shù)關(guān)系式分別為y=x和y=-2x+6,動(dòng)點(diǎn)P(x,0)在OB上移動(dòng)(0<x<3),過(guò)點(diǎn)P作直線(xiàn)l與x軸垂直.
(1)求點(diǎn)C的坐標(biāo);
(2)設(shè)△OBC中位于直線(xiàn)l左側(cè)部分的面積為s,寫(xiě)出s與x之間的函數(shù)關(guān)系式;
(3)在直角坐標(biāo)系中畫(huà)出(2)中函數(shù)的圖象;
(4)當(dāng)x為何值時(shí),直線(xiàn)l平分△OBC的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線(xiàn)OC、BC的函數(shù)關(guān)系式分別是y1=x和y2=-2x+6,動(dòng)點(diǎn)P(x,0)在OB上運(yùn)動(dòng)(0<x<3),過(guò)點(diǎn)P作直線(xiàn)m與x軸垂直.
(1)求點(diǎn)C的坐標(biāo);
(2)當(dāng)x為何值時(shí),直線(xiàn)m平分△COB的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線(xiàn)OC、BC的函數(shù)關(guān)系式分別是y1=x和y2=-2x+6.
(1)求點(diǎn)C的坐標(biāo).
(2)當(dāng)x取何值時(shí)y1>y2?
(3)求△COB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案