拋物線y=ax2+bx(a≠0)經過點A(1,數(shù)學公式),對稱軸是直線x=2,頂點是D,與x軸正半軸的交點為點B.
(1)求拋物線y=ax2+bx(a≠0)的解析式和頂點D的坐標;  
(2)過點D作y軸的垂線交y軸于點C,點M在射線BO上,當以DC為直徑的⊙N和以MB為半徑的⊙M相切時,求點M的坐標.

解:(1)由題意,得,
解得:
則拋物線y=ax2+bx(a≠0)的解析式,頂點D(2,3).

(2)設⊙M的半徑為r.
由當以DC為直徑的⊙N和以MB為半徑的⊙M相切時,分下列兩種情況:
①當⊙M和⊙N外切時,此時點M在線段BO上,
可得32+(4-r-1)2=(r+1)2
解得,

②當⊙M和⊙N內切時,此時點M在線段BO的延長線上,
可得32+(r-1-2)2=(r-1)2
解得,

綜合①、②可知,當⊙M和⊙N相切時,
分析:(1)根據(jù)拋物線y=ax2+bx(a≠0)經過點A(1,),對稱軸是直線x=2,可得關于a,b的方程組,求得a,b的值,從而得到拋物線y=ax2+bx(a≠0)的解析式;再根據(jù)頂點坐標公式即可得到頂點D的坐標;
(2)設⊙M的半徑為r.分兩種情況:①當⊙M和⊙N外切時,此時點M在線段BO上;②當⊙M和⊙N外切時,此時點M在線段BO的延長線上;列出關于r的方程,求得r的值,從而得到點M的坐標.
點評:考查了二次函數(shù)綜合題,涉及的知識點有:待定系數(shù)法求函數(shù)解析式,對稱軸公式、頂點坐標公式;第(2)問注意分內切和外切兩種情況討論求解,綜合性較強.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知點(2,8)在拋物線y=ax2上,則a的值為( 。
A、±2
B、±2
2
C、2
D、-2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,以A(3,0)為圓心,以5為半徑的圓與x軸相交于B、C,與y軸的負半軸相交于D.
(1)若拋物線y=ax2+bx+c經過B、C、D三點,求此拋物線的解析式,并寫出拋物線與圓A的另一個交點E的坐標;
(2)若動直線MN(MN∥x軸)從點D開始,以每秒1個長度單位的速度沿y軸的正方向移動,且與線段CD、y軸分別交于M、N兩點,動點P同時從點C出發(fā),在線段OC上以每秒2個長度單位的速度向原點O運動,連接PM,設運動時間為t秒,當t為何值時,
MN•OPMN+OP
的值最大,并求出最大值;
(3)在(2)的條件下,若以P、C、M為頂點的三角形與△OCD相似,求實數(shù)t的值.精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若(2,0)、(4,0)是拋物線y=ax2+bx+c上的兩個點,則它的對稱軸是直線( 。
A、x=0B、x=1C、x=2D、x=3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標平面內,O為原點,拋物線y=ax2+bx經過點A(6,0),且頂點B(m,6)在直線y=2x上.
(1)求m的值和拋物線y=ax2+bx的解析式;
(2)如在線段OB上有一點C,滿足OC=2CB,在x軸上有一點D(10,0),連接DC,且直線DC與y軸交于點E.
①求直線DC的解析式;
②如點M是直線DC上的一個動點,在x軸上方的平面內有另一點N,且以O、E、M、N為頂點的四邊形是菱形,請求出點N的坐標.(直接寫出結果,不需要過程.)
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是
等腰
等腰
三角形;
(2)若拋物線y=-x2+bx(b>0)的“拋物線三角形”是等腰直角三角形,求b的值;
(3)如圖,△OAB是拋物線y=-x2+b′x(b′>0)的“拋物線三角形”,是否存在以原點O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點的拋物線的表達式;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案