如圖,含30°的兩塊相同三角板ABC和DEF都是斜邊為4cm的直角三角形,且A、E、B、D(B、E不重合)都在同一直線(xiàn)上,連接CE、BF.
(1)求證:四邊形CEFB是平行四邊形;
(2)當(dāng)點(diǎn)A、E相距3cm時(shí),將△ABC沿著AD的方向以每秒1cm的速度運(yùn)動(dòng),設(shè)△ABC運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)問(wèn):當(dāng)t為何值時(shí),四邊形CEFB是菱形?說(shuō)明你的理由;
(3)在(2)中再猜想:四邊形CEFB有可能是矩形嗎?若能,直接寫(xiě)出t的值及此矩形的面積;若不能,請(qǐng)說(shuō)明理由.

(1)證明:∵Rt△ABC≌Rt△DEF,
∠CAB=∠FDE=30°,
∴BC=EF,∠CBA=∠FED=60°,
∴BC∥EF,
∴四邊形CEFB是平行四邊形;

(2)解:如圖1,當(dāng)t=1秒時(shí),四邊形CEFB是菱形,
∵t=1,∴AE=3-1×1=2,
∴BE=AB-AE=4-2=2,
∵∠ACB=90°,∠CAB=30°,
∴BC=AB=×4=2,
∴BC=BE,
∵∠CBA=60°,
∴△CBE是等邊三角形,
∴BC=CE,
∵四邊形CEFB是平行四邊形,
∴四邊形CEFB是菱形;

(3)解:能,如圖2,
當(dāng)t=3秒時(shí),A,E重合,B,D重合,
∵∠CAB+∠BAF=90°,∠C=∠F=90°,
∴四邊形CEFB是矩形,
S矩形CEFB=AC×BC=2×2=4(cm2).
分析:(1)利用Rt△ABC≌Rt△DEF,得出∠CAB=∠FDE=30°,進(jìn)而求出BC=EF,BC∥EF,即可得出四邊形CEFB是平行四邊形;
(2)利用當(dāng)t=1秒時(shí),首先得出△CBE是等邊三角形,進(jìn)而求出BC=CE,即可求出四邊形CEFB是菱形;
(3)當(dāng)t=3秒時(shí),A,E重合,B,D重合,即可得出矩形以及它的面積.
點(diǎn)評(píng):此題主要考查了菱形的判定以及平行四邊形的判定和矩形的判定以及矩形面積求法,利用Rt△ABC≌Rt△DEF,得出對(duì)應(yīng)線(xiàn)段以及對(duì)應(yīng)角的關(guān)系是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,我們將相同的兩塊含30°角的直角三角板Rt△DEF與Rt△ABC疊合,使DE在AB上,DE過(guò)點(diǎn)C,已知AC=DE=6.
(1)將圖1中的△DEF繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)(DF與AB不重合),使邊DF、DE分別交AC、BC于點(diǎn)P、Q,如圖2.
①求證:△CQD∽△APD;
②連接PQ,設(shè)AP=x,求面積S△PCQ關(guān)于x的函數(shù)關(guān)系式;
(2)將圖1中的△DEF向左平移(點(diǎn)A、D不重合),使邊FD、FE分別交AC、BC于點(diǎn)M、N設(shè)AM=t,如圖3.
①判斷△BEN是什么三角形?并用含t的代數(shù)式表示邊BE和BN;
②連接MN,求面積S△MCN關(guān)于t的函數(shù)關(guān)系式;
(3)在旋轉(zhuǎn)△DEF的過(guò)程中,試探求AC上是否存在點(diǎn)P,使得S△PCQ等于平移所得S△MCN的最大值?說(shuō)明你的理由.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、將兩塊含30°的直角三角板疊放成如圖那樣,若OD⊥AB,CD交OA于點(diǎn)E,則∠OED=
60
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(創(chuàng)新題).我們使用的三角板中有30°,45°,60°和90°特殊角,我們規(guī)定:由一副三角板中的角加,減所得的角稱(chēng)之為”半特殊角”.如135°=90°+45°等.如圖是由兩塊斜邊等長(zhǎng)的三角板拚湊而成的,
(1)寫(xiě)出圖中所有的小于平角的”半特殊角”和它們的度數(shù);
(2)利用圖求sin15°的值;
(3)將圖中含30°角的直角三角板沿AB翻折得△ABC1,再作△ABC關(guān)于AB中點(diǎn)O的中心對(duì)稱(chēng)△ABC2,連AC2,BC1,線(xiàn)段DC2,DC1分別交AB于F,G,畫(huà)出圖形,指出其中的兩對(duì)相似三角形,并求出其中一對(duì)相似三角形的相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,含30°的兩塊相同三角板ABC和DEF都是斜邊為4cm的直角三角形,且A、E、B、D(B、E不重合)都在同一直線(xiàn)上,連接CE、BF.
(1)求證:四邊形CEFB是平行四邊形;
(2)當(dāng)點(diǎn)A、E相距3cm時(shí),將△ABC沿著AD的方向以每秒1cm的速度運(yùn)動(dòng),設(shè)△ABC運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)問(wèn):當(dāng)t為何值時(shí),四邊形CEFB是菱形?說(shuō)明你的理由;
(3)在(2)中再猜想:四邊形CEFB有可能是矩形嗎?若能,直接寫(xiě)出t的值及此矩形的面積;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案