如圖1,在平面直角坐標系中,點A的坐標為(1,2),點B的坐標為(3,1),二次函數(shù)y=x2的圖象記為拋物線l1
(1)平移拋物線l1,使平移后的拋物線過點A,但不過點B,寫出平移后的一個拋物線的函數(shù)表達式:______(任寫一個即可);
(2)平移拋物線l1,使平移后的拋物線過A,B兩點,記為拋物線l2,如圖2,求拋物線l2的函數(shù)表達式;
(3)設(shè)拋物線l2的頂點為C,K為y軸上一點.若S△ABK=S△ABC,求點K的坐標;
(4)請在圖3上用尺規(guī)作圖的方式探究拋物線l2上是否存在點P,使△ABP為等腰三角形.若存在,請判斷點P共有幾個可能的位置(保留作圖痕跡);若不存在,請說明理由.

解:(1)有多種答案,符合條件即可.
例如y=x2+1,y=x2+x,y=(x-1)2+2或y=x2-2x+3,
y=(x+-1)2,y=(x-1-2

(2)設(shè)拋物線l2的函數(shù)表達式為y=x2+bx+c,
∵點A(1,2),B(3,1)在拋物線l2上,
,
解得
∴拋物線l2的函數(shù)表達式為y=x2-x+

(3)y=x2-x+=(x-2+,
∴C點的坐標為(,).
過A,B,C三點分別作x軸的垂線,垂足分別為D,E,F(xiàn),
則AD=2,CF=,BE=1,DE=2,DF=,EF=
∴S△ABC=S梯形ADEB-S梯形ADFC-S梯形CFEB=(2+1)×2-(2+)×-(1+)×=
延長BA交y軸于點G,設(shè)直線AB的函數(shù)表達式為y=mx+n,
∵點A(1,2),B(3,1)在直線AB上,
,
解得
∴直線AB的函數(shù)表達式為y=-x+
∴G點的坐標為(0,).
設(shè)K點坐標為(0,h),分兩種情況:
若K點位于G點的上方,則KG=h-
連接AK,BK.
S△ABK=S△BKG-S△AKG=×3×(h-)-×1×(h-)=h-
∵S△ABK=S△ABC=,
∴h-=,
解得h=
∴K點的坐標為(0,).
若K點位于G點的下方,則KG=-h.
同理可得,h=
∴K點的坐標為(0,).

(4)作圖痕跡如圖所示.
①以A為圓心,AB為半徑作弧可交拋物線l2于一點;②以B為圓心,AB為半徑坐標交拋物線于另一點;③作線段AB的垂直平分線可交拋物線于兩點,因此共有4個符合條件的P點.
分析:(1)本題答案不唯一,符合條件均可.
(2)可設(shè)出平移后的二次函數(shù)的解析式,然后將A、B的坐標代入拋物線的解析式中,即可求得l2的函數(shù)表達式.
(3)本題可通過求三角形的面積來求K的坐標.由于三角形ABC的面積無法直接求出,因此可其轉(zhuǎn)換成其他規(guī)則圖形面積的和差來解.分別過A、B、C三點作x軸的垂線,因此△ABC的面積可用三個直角梯形的面積差來求出.可先根據(jù)直線AB求出其與y軸的交點G的坐標,設(shè)出K點坐標后即可表示出KG的長,然后可根據(jù)△KBG和△KAG的面積差表示出△KAB的面積,然后根據(jù)得出的△ABC的面積即可求出K的坐標.
(4)應有三點:①以A為圓心,AB為半徑作弧可交拋物線l2于一點;②以B為圓心,AB為半徑坐標交拋物線于另一點;③作線段AB的垂直平分線可交拋物線于兩點,因此共有4個符合條件的P點.
點評:本題考查了二次函數(shù)圖象的平移、二次函數(shù)解析式的確定、圖形面積的求法、等腰三角形的構(gòu)成情況等知識.綜合性強,難度較大.不規(guī)則圖形的面積通常轉(zhuǎn)化為規(guī)則圖形的面積的和差進行求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

23、在數(shù)學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標為(-3,0).
(1)點A的坐標為
(-3,2
2
(-3,2
2
,點B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點O為頂點且過點A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學 來源:同步輕松練習 八年級 數(shù)學 上 題型:059

學校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應各點.

(3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當n=10時,s的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年北京海淀區(qū)九年級第一學期期中測評數(shù)學試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對稱問題時發(fā)現(xiàn):

如圖1,當點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點再繞著點旋轉(zhuǎn)180°得到點,這時點與點重合.

如圖2,當點、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,小明發(fā)現(xiàn)P、兩點關(guān)于點中心對稱.

(1)請在圖2中畫出點, 小明在證明P、兩點關(guān)于點中心對稱時,除了說明P、、三點共線之外,還需證明;

(2)如圖3,在平面直角坐標系xOy中,當、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標為(),點的坐為.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在數(shù)學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),
(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作______.

查看答案和解析>>

同步練習冊答案