【題目】如圖,已知在等腰Rt△ABC中,∠C=90°,斜邊AB=2,若將△ABC翻折,折痕EF分別交邊AC、邊BC于點E和點F(點E不與A點重合,點F不與B點重合),且點C落在AB邊上,記作點D.過點D作DK⊥AB,交射線AC于點K,設(shè)AD=x,y=cot∠CFE,
(1)求證:△DEK∽△DFB;
(2)求y關(guān)于x的函數(shù)解析式并寫出定義域;
(3)聯(lián)結(jié)CD,當(dāng) = 時,求x的值.
【答案】
(1)證明:如圖1,
由折疊可得:∠EDF=∠C=90°,∠DFE=∠CFE.
∵△ABC是等腰直角三角形,∠C=90°,
∴∠A=∠B=45°.
∵DK⊥AB,
∴∠ADK=∠BDK=90°,
∴∠AKD=45°,∠EDF=∠KDB=90°,
∴∠EKD=∠FBD,∠EDK=∠FDB,
∴△DEK∽△DFB;
(2)解:∵∠A=∠AKD=45°,
∴DK=DA=x.
∵AB=2,
∴DB=2﹣x.
∵△DFB∽△DEK,
∴ = ,
∴y=cot∠CFE=cot∠DFE= = = .
當(dāng)點F在點B處時,
DB=BC=ABsinA=2× = ,AD=AB﹣AD=2﹣ ;
當(dāng)點E在點A處時,
AD=AC=ABcosA=2× = ;
∴該函數(shù)的解析式為y= ,定義域為2﹣ <x<
(3)取線段EF的中點O,連接OC、OD,
∵∠ECF=∠EDF=90°,
∴OC=OD= EF.
設(shè)EF與CD交點為H,根據(jù)軸對稱的性質(zhì)可得EF⊥CD,且CH=DH= CD.
∵ = ,∴sin∠HOC= = ,
∴∠HOC=60°
① 若點K在線段AC上,如圖2,
∵CO= EF=OF,
∴∠OCF=∠OFC= ∠HOC=30°,
∴y=cot30°= ,
∴ = ,
解得:x= ﹣1;
②若點K在線段AC的延長線上,如圖3,
∵OC=OF,∠FOC=60°,
∴△OFC是等邊三角形,
∴∠OFC=60°,
∴y=cot60°= ,
∴ = ,
解得:x=3﹣ ;
綜上所述:x的值為 ﹣1或3﹣
【解析】(1)要證△DEK∽△DFB,只需證到∠EKD=∠FBD,∠EDK=∠FDB即可;(2)易得DK=DA=x,DB=2﹣x,由△DFB∽△DEK可得到 = ,從而可得y=cot∠CFE=cot∠DFE= = = ;然后只需先求出在兩個臨界位置(點F在點B處、點E在點A處)下的x值,就可得到該函數(shù)的定義域;(3)取線段EF的中點O,連接OC、OD,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得OC=OD= EF.設(shè)EF與CD交點為H,根據(jù)軸對稱的性質(zhì)可得EF⊥CD,且CH=DH= CD.由 = 可得tan∠HOC= = ,從而得到∠HOC=60°.①若點K在線段AC上,如圖2,由∠HOC=60°可求得∠OFC=30°,由此可得到y(tǒng)的值,再把y的值代入函數(shù)解析式就可求出x的值;②若點K在線段AC的延長線上,如圖3,由∠HOC=60°可求得∠OFC=60°,由此可得到y(tǒng)的值,再把y的值代入函數(shù)解析式就可求出x的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點,拋物線y=ax2﹣ax+6與x軸負(fù)半軸交于點A,與x軸的正半軸交于點B,且AB=7.
(1)如圖1,求a的值;
(2)如圖2,點P在第一象限內(nèi)拋物線上,過P作PH∥AB,交y軸于點H,連接AP,交OH于點F,設(shè)HF=d,點P的橫坐標(biāo)為t,求d與t之間的函數(shù)關(guān)系式,并直接寫出t的取值范圍;
(3)如圖3,在(2)的條件下,當(dāng)PH=2d時,將射線AP沿著x軸翻折交拋物線于點M,在拋物線上是否存在點N,使∠AMN=45°,若存在,求出點N的坐標(biāo).若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】x1 , x2是關(guān)于x的一元二次方程x2﹣mx+m﹣2=0的兩個實數(shù)根,是否存在實數(shù)m使 + =0成立?則正確的結(jié)論是( )
A.m=0時成立
B.m=2時成立
C.m=0或2時成立
D.不存在
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知直線y=x+4與x軸、y軸分別相交于點A和點C,拋物線y=x2+kx+k﹣1圖象過點A和點C,拋物線與x軸的另一交點是B,
(1)求出此拋物線的解析式、對稱軸以及B點坐標(biāo);
(2)若在y軸負(fù)半軸上存在點D,能使得以A、C、D為頂點的三角形與△ABC相似,請求出點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點D在邊AB上,線段DC繞點D逆時針旋轉(zhuǎn),端點C恰巧落在邊AC上的點E處.如果 =m, =n.那么m與n滿足的關(guān)系式是:m=(用含n的代數(shù)式表示m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寫出下列命題的已知、求證,并完成證明過程.
(1)命題:如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等(簡稱:“等角對等邊”).
已知:如圖, .
求證: .
(2)證明命題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(4,0),B(3,3),以AO,AB為邊作平行四邊形OABC,則經(jīng)過C點的反比例函數(shù)的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,正比例函數(shù)y=ax的圖象與反比例函數(shù)y= 的圖象交于點A(3,2)
(1)試確定上述正比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象回答,在第一象限內(nèi),當(dāng)x取何值時,反比例函數(shù)的值大于正比例函數(shù)的值?
(3)點M(m,n)是反比例函數(shù)圖象上的一動點,其中0<m<3,過點M作直線MB∥x軸,交y軸于點B;過點A作直線AC∥y軸交x軸于點C,交直線MB于點D.當(dāng)四邊形OADM的面積為6時,請判斷線段BM與DM的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017赤峰)已知平行四邊形ABCD.
(1)尺規(guī)作圖:作∠BAD的平分線交直線BC于點E,交DC延長線于點F(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)在(1)的條件下,求證:CE=CF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com