如圖,把拋物線y=x2沿直線y=x平移個(gè)單位后,其頂點(diǎn)在直線上的A處,則平移后的拋物線解析式是(    )
A.y=(x+1)2-1B.y=(x+1)2+1
C.y=(x-1)2+1D.y=(x-1)2-1
C

試題分析:首先根據(jù)A點(diǎn)所在位置設(shè)出A點(diǎn)坐標(biāo)為(m,m),再根據(jù),利用勾股定理求出m的值,然后根據(jù)拋物線平移的性質(zhì)求解即可.
∵A在直線上,
∴設(shè)A(m,m),
,
,
解得舍去),
,
∴A(1,1),
∴拋物線解析式為,
故選C.
點(diǎn)評:解題的關(guān)鍵是求出A點(diǎn)坐標(biāo),同時(shí)熟練掌握拋物線平移的性質(zhì):左加右減,上加下減.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩直線l1,l2分別經(jīng)過點(diǎn)A(1,0),點(diǎn)B(﹣3,0),并且當(dāng)兩直線同時(shí)相交于y軸正半軸的點(diǎn)C時(shí),恰好有l(wèi)1⊥l2,經(jīng)過點(diǎn)A、B、C的拋物線的對稱軸與直線l1交于點(diǎn)K,如圖所示.

(1)求點(diǎn)C的坐標(biāo),并求出拋物線的函數(shù)解析式;
(2)拋物線的對稱軸被直線l1,拋物線,直線l2和x軸依次截得三條線段,問這三條線段有何數(shù)量關(guān)系?請說明理由;
(3)當(dāng)直線l2繞點(diǎn)C旋轉(zhuǎn)時(shí),與拋物線的另一個(gè)交點(diǎn)為M,請找出使△MCK為等腰三角形的點(diǎn)M,簡述理由,并寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某公司經(jīng)銷某品牌運(yùn)動(dòng)鞋,年銷售量為10萬雙,每雙鞋按250元銷售,可獲利25﹪設(shè)每雙鞋的成本價(jià)為元.

(1)試求的值;
(2)為了擴(kuò)大銷售量,公司決定拿出一定量的資金做廣告,根據(jù)市場調(diào)查,若每年投入廣告費(fèi)為(萬元)時(shí),產(chǎn)品的年銷售量將是原來年銷售量的倍,且之間的關(guān)系滿足.請根據(jù)圖象提供的信息,求出之間的函數(shù)關(guān)系式;
(3)在(2)的條件下求年利潤S(萬元)與廣告費(fèi)(萬元)之間的函數(shù)關(guān)系式,并請回答廣告費(fèi)(萬元)在什么范圍內(nèi),公司獲得的年利潤S(萬元)隨廣告費(fèi)的增大而增多?(注:年利潤S=年銷售總額-成本費(fèi)-廣告費(fèi))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為 [m,1-m,-1]的函數(shù)的一些結(jié)論:
① 當(dāng)m=-1時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)是(1,0);
② 當(dāng)m>0時(shí),函數(shù)圖象截x軸所得的線段長度大于1;
③ 當(dāng)m<0時(shí),函數(shù)在x>時(shí),y隨x的增大而減;
④ 不論m取何值,函數(shù)圖象經(jīng)過一個(gè)定點(diǎn).
其中正確的結(jié)論有            ( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的頂點(diǎn)坐標(biāo)是(     )
A.(0,1)B.(0,一1)C.(1,0)D.(一1,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

科幻小說《實(shí)驗(yàn)室的故事》中,有這樣一個(gè)情節(jié),科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一天后,測試出這種植物高度的增長情況(如下表):
溫度/℃
……
-4
-2
0
2
4
4.5
……
植物每天高度增長量/mm
……
41
49
49
41
25
19.75
……
由這些數(shù)據(jù),科學(xué)家推測出植物每天高度增長量是溫度的函數(shù),且這種函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.
(1)請你選擇一種適當(dāng)?shù)暮瘮?shù),求出它的函數(shù)關(guān)系式,并簡要說明不選擇另外兩種函數(shù)的理由;
(2)溫度為多少時(shí),這種植物每天高度的增長量最大?
(3)如果實(shí)驗(yàn)室溫度保持不變,在10天內(nèi)要使該植物高度增長量的總和超過250mm,那么實(shí)驗(yàn)室的溫度應(yīng)該在哪個(gè)范圍內(nèi)選擇?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)為常數(shù)),當(dāng)取不同的值時(shí),其圖象構(gòu)成一個(gè)“拋物線系”.下圖分別是當(dāng),,,時(shí)二次函數(shù)的圖象.它們的頂點(diǎn)在一條直線上,這條直線的解析式是__________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的自變量x的取值范圍是            

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,E是正方形ABCD的邊AB上的動(dòng)點(diǎn), EF⊥DE交BC于點(diǎn)F.若正方形的邊長為4, AE=,BF=.則 的函數(shù)關(guān)系式為          

查看答案和解析>>

同步練習(xí)冊答案