如圖,過(guò)反比例函數(shù)y=數(shù)學(xué)公式(x>0)圖象上任意兩點(diǎn)A、B分別作x軸的垂線,垂足分別為C、D,連接OA、OB,設(shè)AC與OB的交點(diǎn)為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得


  1. A.
    S1>S2
  2. B.
    S1<S2
  3. C.
    S1=S2
  4. D.
    S1、S2的大小關(guān)系不能確定
C
分析:易得△AOC和△OBD的面積相等,都減去公共部分△OCE的面積可得S1、S2的大小關(guān)系.
解答:設(shè)點(diǎn)A的坐標(biāo)為(x,y),點(diǎn)B的坐標(biāo)為(a,b),
∵A、B在反比例函數(shù)y=上,
∴xy=2,ab=2,
∴S△AOC=xy=1;S△OBD=ab=1.
∴S△AOC=S△OBD,
∴S△AOC-S△OCE=S△OBD-S△OCE,
即S1=S2
故選C.
點(diǎn)評(píng):考查反比例函數(shù)的比例系數(shù)的意義;突破點(diǎn)是得到△AOC和△OBD的面積相等.用到的知識(shí)點(diǎn)為:在反比例函數(shù)圖象上的點(diǎn)的橫縱坐標(biāo)的積等于反比例函數(shù)的比例系數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,過(guò)反比例函數(shù)y=
9
x
(x>0)的圖象上任意兩點(diǎn)A、B分別作x軸的垂線,垂足分別為C、D,連接OA、OB,設(shè)△AOC和△BOD的面積分別是S1、S2,比較它們的大小,可得( 。
A、S1>S2
B、S1=S2
C、S1<S2
D、大小關(guān)系不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,過(guò)反比例函數(shù)y=
1
x
(x>0)的圖象上任意兩點(diǎn)A、B分別作x軸的垂線,垂足分別為C、D,連接OA、OB,設(shè)AC與OB的交點(diǎn)為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得( 。
A、S1>S2
B、S1=S2
C、Sl<S2
D、大小關(guān)系不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,過(guò)反比例函數(shù)y=
2x
(x>0)
的圖象上任意兩點(diǎn)A,B分別作x軸的垂線,垂足為A′,B′,連接OA,OB,設(shè)AA′與OB的交點(diǎn)為P,△AOP與梯形PA′B′B的面積分別為S1,S2,則S1
=
=
S2(填>、=或<)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,過(guò)反比例函數(shù)y=
2x
(x>0)圖象上任意兩點(diǎn)A、B分別作x軸的垂線,垂足分別為C、D,連接OA、OB,設(shè)AC與OB的交點(diǎn)為E,△AOE與梯形ECDB的面積分別為S1、S2,則它們的大小關(guān)系為
S1=S2
S1=S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,過(guò)反比例函數(shù)y=
2
x
(x>0)
的圖象上任意兩點(diǎn)A,B分別作x軸的垂線,垂足為A',B',連接OA,OB,設(shè)AA'與OB的交點(diǎn)為P,△AOP與梯形PA'B'B的面積分別為S1,S2,比較它們的大小,可有( 。
A、S1>S2
B、S1=S2
C、S1<S2
D、大小關(guān)系不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案