如圖,⊙A和⊙B是外離兩圓,⊙A的半徑長為2,⊙B的半徑長為1,AB=4,P為連接兩圓圓心的線段AB上的一點,PC切⊙A于點C,PD切⊙B于點D.
(1)若PC=PD,求PB的長.
(2)試問線段AB上是否存在一點P,使PC2+PD2=4?如果存在,問這樣的P點有幾個并求出PB的值;如果不存在,說明理由.
(3)當點P在線段AB上運動到某處,使PC⊥PD時,就有△APC∽△PBD.請問:除上述情況外,當點P在線段AB上運動到何處(說明PB的長為多少;或PC、PD具有何種關(guān)系)時,這兩個三角形仍相似;并判斷此時直線CP與⊙B的位置關(guān)系,證明你的結(jié)論.

解:(1)∵PC切⊙A點于C,
∴PC⊥AC,
PC2=PA2-AC2,
同理PD2=PB2-BD2
∵PC=PD,
∴PA2-AC2=PB2-BD2
設(shè)PB=x,PA=4-x代入得x2-12=(4-x)2-22,
解得x=,1<<2,
即PB的長為(PA長為>2),

(2)假定存在一點P使PC2+PD2=4,設(shè)PB=x,
則PD2=x2-1 PC2=(4-x)2-22,
代入條件得(4-x)2-22+x2-1=4,
代簡得2x2-8x+7=0解得x=2±,
∵P在兩圓間的圓外部分,
∴1<PB<2即1<x<2,
∴滿足條件的P點只有一個,這時PB=2-,

(3)當PC:PD=2:1或PB=時,也有△PCA∽△PDB,
這時,在△PCA與△PDB中
∠C=∠D=90°,
∴△PCA∽△PDB,
∴∠BPD=∠APC=∠BPE(E在CP的延長線上),
∴B點在∠DPE的角平分線上,B到PD與PE的距離相等,
∵⊙B與PD相切,
∴⊙B也與CP的延長線PE相切.
分析:(1)由于PC,PD都是切線,那么三角形ACP和PDB就都是直角三角形,那么我們可以用勾股定理來表示出PC2和PD2,由于PC=PD,那么可得出關(guān)于CA2、AP2、PB2、BD2的比例關(guān)系式,已知了AC,BD,AB的值如果我們用PB表示出AP,就能在這個比例關(guān)系式中求出PB的值;
(2)方法同(1)類似只不過相等改成了PC2+PD2=4,可用(1)的方法先求出PB的長,然后根據(jù)PB的取值范圍來判斷有幾個符合條件的值;
(3)要兩個三角形相似,已知的條件有∠ACP=∠BDP=90°,AC:BD=2:1,那么只要讓PC:PD=2:1,就能構(gòu)成三角形相似判定中兩組對應(yīng)邊對應(yīng)成比例且夾角相等的條件,兩三角形相似后∠CPA=∠CPB,如果延長CP那么CP延長線與PD組成的角中,PB正好是角平分線,根據(jù)角平分線的點到角兩邊的距離相等,可得出B到CP延長線的距離等于半徑BD的長,因此CP與⊙B也相切.
點評:本題主要考查了切線性質(zhì)的判定以及相似三角形的判定,具有一定的綜合性,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙A和⊙B是外離兩圓,⊙A的半徑長為2,⊙B的半徑長為1,AB=4,P為連接兩圓圓心的線段AB上的一點,PC切⊙A于點C,PD切⊙B于點D.
(1)若PC=PD,求PB的長.
(2)試問線段AB上是否存在一點P,使PC2+PD2=4?如果存在,問這樣的P點有幾個并求出PB的值;如果不存在,說明理由.
(3)當點P在線段AB上運動到某處,使PC⊥PD時,就有△APC∽△PBD.請問:除上述情況外,當點P在線段AB上運動到何處(說明PB的長為多少;或PC精英家教網(wǎng)、PD具有何種關(guān)系)時,這兩個三角形仍相似;并判斷此時直線CP與⊙B的位置關(guān)系,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙A和⊙B是外離的兩圓,兩圓的連心線分別交⊙A、⊙B于E、F,點P是線段AB上的一動點(點P不與E、F重合),PC切⊙A于點C,P精英家教網(wǎng)D切⊙B于點D,已知⊙A的半徑為2,⊙B的半徑為1,AB=5.
(1)如設(shè)線段BP的長為x,線段CP的長為y,求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(2)如果PC=PD,求PB的長;
(3)如果PC=2PD,判斷此時直線CP與⊙B的位置關(guān)系,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《圓》(10)(解析版) 題型:解答題

(2003•舟山)如圖,⊙A和⊙B是外離兩圓,⊙A的半徑長為2,⊙B的半徑長為1,AB=4,P為連接兩圓圓心的線段AB上的一點,PC切⊙A于點C,PD切⊙B于點D.
(1)若PC=PD,求PB的長.
(2)試問線段AB上是否存在一點P,使PC2+PD2=4?如果存在,問這樣的P點有幾個并求出PB的值;如果不存在,說明理由.
(3)當點P在線段AB上運動到某處,使PC⊥PD時,就有△APC∽△PBD.請問:除上述情況外,當點P在線段AB上運動到何處(說明PB的長為多少;或PC、PD具有何種關(guān)系)時,這兩個三角形仍相似;并判斷此時直線CP與⊙B的位置關(guān)系,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年浙江省舟山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•舟山)如圖,⊙A和⊙B是外離兩圓,⊙A的半徑長為2,⊙B的半徑長為1,AB=4,P為連接兩圓圓心的線段AB上的一點,PC切⊙A于點C,PD切⊙B于點D.
(1)若PC=PD,求PB的長.
(2)試問線段AB上是否存在一點P,使PC2+PD2=4?如果存在,問這樣的P點有幾個并求出PB的值;如果不存在,說明理由.
(3)當點P在線段AB上運動到某處,使PC⊥PD時,就有△APC∽△PBD.請問:除上述情況外,當點P在線段AB上運動到何處(說明PB的長為多少;或PC、PD具有何種關(guān)系)時,這兩個三角形仍相似;并判斷此時直線CP與⊙B的位置關(guān)系,證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案