【題目】如圖,∠AOB是直角,OA平分∠COD,OE平分∠BOD,若∠BOE=23°,則∠BOC的度數(shù)是(  )

A. 113° B. 134° C. 136° D. 144°

【答案】B

【解析】

首先根據(jù)OE平分∠BOD,BOE=23°,求出∠BOD的度數(shù)是多少;然后根據(jù)∠AOB是直角,求出∠AOD的度數(shù),再根據(jù)OA平分∠COD,求出∠COD的度數(shù),據(jù)此求出∠BOC的度數(shù)是多少即可.

OE平分∠BOD,BOE=23°

∴∠BOD=23°×2=46°;

∵∠AOB是直角,

∴∠AOD=90°-46°=44°,

又∵OA平分∠COD,

∴∠COD=2AOD=2×44°=88°,

∴∠BOC=BOD+COD=46°+88°=134°

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ON平分AOC,OM平分BOCAOB=90°

1)若AOC=40°,求AOMMON的大小;

2)當銳角AOC的度數(shù)發(fā)生改變時,MON的大小是否發(fā)生改變?如不會改變,請寫出MON的大小,并寫出推理過程;如會改變,也請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A,B分別是數(shù)軸上兩點,點O為原點,點A表示的數(shù)為﹣60,點B表示的數(shù)為30.現(xiàn)有兩個動點P、Q均從點A出發(fā),沿數(shù)軸正方向移動,點P的速度為6單位/秒,點Q的速度為3單位/秒.

(1)若兩動點同時出發(fā),當點P到達點B時,點Q在數(shù)軸上表示的數(shù)為_____;

(2)若點P出發(fā)2秒鐘后點Q出發(fā),當點P到達點B時,P、Q兩點同時停止運動,設點P運動的時間為t秒,運動過程中點P表示的數(shù)為x,點Q表示的數(shù)為y,求t為何值時,|y|=2|x|.

(3)在(1)的條件下,若點P到達點B停留5秒后以5單位/秒的速度勻速沿數(shù)軸向點A運動,求在整個運動過程中當t為何值時,P,Q兩點相距20個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料: 如圖1,在平面直角坐標系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點.
觀察圖象可知:
①當x=﹣3或1時,y1=y2;
②當﹣3<x<0或x>1時,y1>y2 , 即通過觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學根據(jù)學習以上知識的經(jīng)驗,對求不等式x3+4x2﹣x﹣4>0的解集進行了探究.

下面是他的探究過程,請將(2)、(3)、(4)補充完整:
(1)①將不等式按條件進行轉化: 當x=0時,原不等式不成立;
當x>0時,原不等式可以轉化為x2+4x﹣1>
當x<0時,原不等式可以轉化為x2+4x﹣1< ;
②構造函數(shù),畫出圖象
設y3=x2+4x﹣1,y4= ,在同一坐標系中分別畫出這兩個函數(shù)的圖象.
雙曲線y4= 如圖2所示,請在此坐標系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(2)確定兩個函數(shù)圖象公共點的橫坐標 觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為
(3)借助圖象,寫出解集 結合(1)的討論結果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD是菱形,AB=4,ABC=60°,EAF的兩邊分別與射線CB,DC相交于點E,F(xiàn),且∠EAF=60°.

(1)如圖1,當點E是線段CB的中點時,直接寫出線段AE,EF,AF之間的數(shù)量關系為: ;

(2)如圖2,當點E是線段CB上任意一點時(點E不與B、C重合),求證:BE=CF;

(3)求AEF周長的最小值。

(4) 如圖3,當點E在線段CB的延長線上,且∠EAB=15°時,求點FBC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知k是不等于0的常數(shù),反比例函數(shù)與二次函數(shù)在同一坐標系的大致圖象如圖,則它們的解析式可能分別是(

A.y=﹣ ,y=﹣kx2+k
B.y= ,y=﹣kx2+k
C.y= ,y=kx2+k
D.y=﹣ ,y=﹣kx2﹣k

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,OE是∠AOD的平分線,OC是∠BOD的平分線.

(1)若∠AOB=130°,則∠COE是多少度?

(2)在(1)的條件下,若∠COD=20°,則∠BOE是多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一個正方體木塊涂成紅色,然后如圖把它的棱三等分,再沿等分線把正方體切開,可以得到27個小正方體.觀察并回答下列問題:

(1)其中三面涂色的小正方體有________個,兩面涂色的小正方體有______個,各面都沒有涂色的小正方體有________個;

(2)如果將這個正方體的棱n等分,所得的小正方體中三面涂色的有_________個,各面都沒有涂色的有________個;

(3)如果要得到各面都沒有涂色的小正方體125個, 那么應該將此正方體的棱______等分.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同學們都知道,|5﹣(﹣2)|表示5與﹣2之差的絕對值,實際上也可理解為5與﹣2兩數(shù)在數(shù)軸上所對的兩點之間的距離.試探索:

(1)求|5﹣(﹣2)|=________.

(2)數(shù)軸上表示x和﹣1的兩點之間的距離表示為________.

(3)找出所有符合條件的整數(shù)x,使|x+5|+|x﹣2|=7,這樣的整數(shù)有________個.

查看答案和解析>>

同步練習冊答案