如圖:△ABC中,∠BAC=90°,AB=AC,點(diǎn)D是斜邊BC的中點(diǎn).
(1)如圖1,若E、F分別是AB、AC上的點(diǎn),且AE=CF.求證:①△AED≌△CFD;②△DEF為等腰直角三角形.
(2)如圖2,點(diǎn)F、E分別D在CA、AB的延長線上,且AE=CF,猜想△DEF是否為等腰直角三角形?如果是請給出證明.
分析:(1)①利用等腰直角三角形的性質(zhì)得出AD=BD=DC,進(jìn)而利用全等三角形的判定得出答案;
②利用全等三角形的性質(zhì)得出DE=DF,∠ADE=∠CDF進(jìn)而得出△DEF為等腰直角三角形;
(2)首先利用已知得出AD=BD=DC,進(jìn)而利用全等三角形的判定得出△AED≌△CFD.
解答:(1)證明:①∵∠BAC=90°,AB=AC,D為BC中點(diǎn),
∴∠BAD=∠DAC=∠B=∠C=45°,
∴AD=BD=DC,
∵在△AED和△CFD中,
AE=CF
∠EAD=∠DAC
AD=DC
,
∴△AED≌△CFD(SAS);

②∵△AED≌△CFD,
∴DE=DF,∠ADE=∠CDF,
又∵∠CDF+∠ADF=90°,
∴△DEF為等腰直角三角形;

(2)△DEF為等腰直角三角形,
理由:∵∠BAC=90° AB=AC,D為BC中點(diǎn)
∴∠BAD=∠DAC=∠B=∠C=45°,
∴AD=BD=DC,
∵在△AED和△CFD中,
AE=CF
∠EAD=∠C
AD=CD

∴△AED≌△CFD(SAS);   
∴DE=DF∠ADE=∠CDF,
又∵∠CDF-∠ADF=90°,
∴△DEF為等腰直角三角形.
點(diǎn)評:此題主要考查了全等三角形的判定與性質(zhì)以及等腰直角三角形的性質(zhì),根據(jù)已知得出AD=BD=DC是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案