問題提出:以n邊形的n個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+n)個(gè)點(diǎn)為頂點(diǎn),可把原n邊形分割成多少個(gè)互不重疊的小三角形?
問題探究:為了解決上面的問題,我們將采取一般問題特殊化的策略,先從簡(jiǎn)單和具體的情形入手,通過觀察、分析,最后歸納出結(jié)論:
探究一:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的一個(gè)點(diǎn)P,共4個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成多少個(gè)互不重疊的小三角形?
如圖(1),顯然,此時(shí)可把△ABC分割成3個(gè)互不重疊的小三角形.
探究二:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的2個(gè)點(diǎn)P、Q,共5個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成多少個(gè)互不重疊的小三角形?

在探究一的基礎(chǔ)上,我們可看作在圖(1)△ABC的內(nèi)部,再添加1個(gè)點(diǎn)Q,那么點(diǎn)Q的位置會(huì)有兩種情況:一種情況,點(diǎn)Q在圖(1)分割成的某個(gè)小三角形內(nèi)部,不妨假設(shè)點(diǎn)Q在△PAC內(nèi)部,如圖(2);另一種情況,點(diǎn)Q在圖(1)分割成的小三角形的某條公共邊上,不妨假設(shè)點(diǎn)Q在P上,如圖(3);顯然,不管哪種情況,都可把△ABC分割成5個(gè)互不重疊的小三角形.
探究三:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的3個(gè)點(diǎn),共6個(gè)點(diǎn)為頂點(diǎn)可把△ABC分割成
7
7
個(gè)互不重疊的小三角形.
探究四:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+3)個(gè)點(diǎn)為頂點(diǎn)可把△ABC分割成
3+2(m-1)或2m+1
3+2(m-1)或2m+1
個(gè)互不重疊的小三角形.
探究拓展:以四邊形的4個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+4)個(gè)點(diǎn)為頂點(diǎn),可把四邊形分割成
4+2(m-1)或2m+2
4+2(m-1)或2m+2
個(gè)互不重疊的小三角形.
問題解決:以n邊形的n個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+n)個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成
n+2(m-1)或2m+n-
n+2(m-1)或2m+n-
個(gè)互不重疊的小三角形.
實(shí)際應(yīng)用:以八邊形的8個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+8)個(gè)點(diǎn)為頂點(diǎn),可把八邊形分割成2013個(gè)互不重疊的小三角形嗎?若行,求出m的值;若不行,請(qǐng)說明理由.
分析:探究三:分三角形內(nèi)部三點(diǎn)共線與不共線兩種情況作出分割示意圖,查出分成的部分即可;
探究四:根據(jù)前三個(gè)探究不難發(fā)現(xiàn),三角形內(nèi)部每增加一個(gè)點(diǎn),分割部分增加2部分,根據(jù)此規(guī)律寫出(m+3)個(gè)點(diǎn)分割的部分?jǐn)?shù)即可;
探究拓展:類似于三角形的推理寫出規(guī)律整理即可得解;
問題解決:根據(jù)規(guī)律,把相應(yīng)的點(diǎn)數(shù)換成m、n整理即可得解;
實(shí)際應(yīng)用:把公式中的相應(yīng)的字母,換成具體的數(shù)據(jù),然后計(jì)算即可得解.
解答:解:探究三:如圖,三角形內(nèi)部的三點(diǎn)共線與不共線時(shí)都分成了7部分,
故答案為:7;分割示意圖(答案不唯一)

探究四:三角形內(nèi)部1個(gè)點(diǎn)時(shí),共分割成3部分,3=3+2(1-1),
三角形內(nèi)部2個(gè)點(diǎn)時(shí),共分割成5部分,5=3+2(2-1),
三角形內(nèi)部3個(gè)點(diǎn)時(shí),共分割成7部分,7=3+2(3-1),
…,
所以,三角形內(nèi)部有m個(gè)點(diǎn)時(shí),3+2(m-1)或2m+1;

探究拓展:四邊形的4個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),
則分割成的不重疊的三角形的個(gè)數(shù)為:4+2(m-1)或2m+2;

問題解決:n+2(m-1)或2m+n-2;

實(shí)際應(yīng)用:把n=8,m=2013代入上述代數(shù)式,得
2m+n-2
=2×2013+8-2
=4026+8-2
=4032.
點(diǎn)評(píng):本題考查了應(yīng)用與設(shè)計(jì)作圖,圖形的變化規(guī)律的問題,讀懂題目信息,根據(jù)前四個(gè)探究得到每多一個(gè)點(diǎn),則三角形的個(gè)數(shù)增加2是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•青島)問題提出:以n邊形的n個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+n)個(gè)點(diǎn)作為頂點(diǎn),可把原n邊形分割成多少個(gè)互不重疊的小三角形?
問題探究:為了解決上面的問題,我們將采取一般問題特殊性的策略,先從簡(jiǎn)單和具體的情形入手:
探究一:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的1個(gè)點(diǎn)P,共4個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成多少個(gè)互不重疊的小三角形?
如圖①,顯然,此時(shí)可把△ABC分割成3個(gè)互不重疊的小三角形.
探究二:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的2個(gè)點(diǎn)P、Q,共5個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成多少個(gè)互不重疊的小三角形?
在探究一的基礎(chǔ)上,我們可看作在圖①△ABC的內(nèi)部,再添加1個(gè)點(diǎn)Q,那么點(diǎn)Q的位置會(huì)有兩種情況:
一種情況,點(diǎn)Q在圖①分割成的某個(gè)小三角形內(nèi)部.不妨假設(shè)點(diǎn)Q在△PAC內(nèi)部,如圖②;
另一種情況,點(diǎn)Q在圖①分割成的小三角形的某條公共邊上.不妨假設(shè)點(diǎn)Q在PA上,如圖③.
顯然,不管哪種情況,都可把△ABC分割成5個(gè)不重疊的小三角形.
探究三:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的3個(gè)點(diǎn)P、Q、R,共6個(gè)點(diǎn)為頂點(diǎn)可把△ABC分割成
7
7
個(gè)互不重疊的小三角形,并在圖④中畫出一種分割示意圖.
探究四:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+3)個(gè)頂點(diǎn)可把△ABC分割成
(2m+1)
(2m+1)
個(gè)互不重疊的小三角形.
探究拓展:以四邊形的4個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+4)個(gè)頂點(diǎn)可把四邊形分割成
(2m+2)
(2m+2)
個(gè)互不重疊的小三角形.
問題解決:以n邊形的n個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+n)個(gè)頂點(diǎn)可把△ABC分割成
(2m+n-2)
(2m+n-2)
個(gè)互不重疊的小三角形.
實(shí)際應(yīng)用:以八邊形的8個(gè)頂點(diǎn)和它內(nèi)部的2012個(gè)點(diǎn),共2020個(gè)頂點(diǎn),可把八邊形分割成多少個(gè)互不重疊的小三角形?(要求列式計(jì)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(山東青島卷)數(shù)學(xué)(帶解析) 題型:解答題

問題提出:以n邊形的n個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+n)個(gè)點(diǎn)作為頂
點(diǎn),可把原n邊形分割成多少個(gè)互不重疊的小三角形?
問題探究:為了解決上面的問題,我們將采取一般問題特殊化的策略,先從簡(jiǎn)單和具體的情形入手:
探究一:以△ABC的3個(gè)頂點(diǎn)和它內(nèi)部的1個(gè)點(diǎn)P,共4個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成多少個(gè)互
不重疊的小三角形?如圖①,顯然,此時(shí)可把△ABC分割成3個(gè)互不重疊的小三角形.
探究二:以△ABC的3個(gè)頂點(diǎn)和它內(nèi)部的2個(gè)點(diǎn)P、Q,共5個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成多少個(gè)
互不重疊的小三角形?
在探究一的基礎(chǔ)上,我們可看作在圖①△ABC的內(nèi)部,再添加1個(gè)點(diǎn)Q,那么點(diǎn)Q的位置會(huì)有兩種
情況:
一種情況,點(diǎn)Q在圖①分割成的某個(gè)小三角形內(nèi)部.不妨設(shè)點(diǎn)Q在△PAC的內(nèi)部,如圖②;
另一種情況,點(diǎn)Q在圖①分割成的小三角形的某條公共邊上.不妨設(shè)點(diǎn)Q在PA上,如圖③.
顯然,不管哪種情況,都可把△ABC分割成5個(gè)互不重疊的小三角形.
探究三:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的3個(gè)點(diǎn)P、Q、R,共6個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成     個(gè)
互不重疊的小三角形,并在圖④中畫出一種分割示意圖.
探究四:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+3)個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成       個(gè)
互不重疊的小三角形.
探究拓展:以四邊形的4個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+4)個(gè)點(diǎn)為頂點(diǎn),可把四邊形分割成
       個(gè)互不重疊的小三角形.
問題解決:以n邊形的n個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+n)個(gè)點(diǎn)作為頂點(diǎn),可把原n邊形分割成
       個(gè)互不重疊的小三角形.
實(shí)際應(yīng)用:以八邊形的8個(gè)頂點(diǎn)和它內(nèi)部的2012個(gè)點(diǎn),共2020個(gè)頂點(diǎn),可把八邊形分割成多少個(gè)互
不重疊的小三角形?(要求列式計(jì)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(山東青島卷)數(shù)學(xué)(解析版) 題型:解答題

問題提出:以n邊形的n個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+n)個(gè)點(diǎn)作為頂

點(diǎn),可把原n邊形分割成多少個(gè)互不重疊的小三角形?

問題探究:為了解決上面的問題,我們將采取一般問題特殊化的策略,先從簡(jiǎn)單和具體的情形入手:

探究一:以△ABC的3個(gè)頂點(diǎn)和它內(nèi)部的1個(gè)點(diǎn)P,共4個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成多少個(gè)互

不重疊的小三角形?如圖①,顯然,此時(shí)可把△ABC分割成3個(gè)互不重疊的小三角形.

探究二:以△ABC的3個(gè)頂點(diǎn)和它內(nèi)部的2個(gè)點(diǎn)P、Q,共5個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成多少個(gè)

互不重疊的小三角形?

在探究一的基礎(chǔ)上,我們可看作在圖①△ABC的內(nèi)部,再添加1個(gè)點(diǎn)Q,那么點(diǎn)Q的位置會(huì)有兩種

情況:

一種情況,點(diǎn)Q在圖①分割成的某個(gè)小三角形內(nèi)部.不妨設(shè)點(diǎn)Q在△PAC的內(nèi)部,如圖②;

另一種情況,點(diǎn)Q在圖①分割成的小三角形的某條公共邊上.不妨設(shè)點(diǎn)Q在PA上,如圖③.

顯然,不管哪種情況,都可把△ABC分割成5個(gè)互不重疊的小三角形.

探究三:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的3個(gè)點(diǎn)P、Q、R,共6個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成      個(gè)

互不重疊的小三角形,并在圖④中畫出一種分割示意圖.

探究四:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+3)個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成        個(gè)

互不重疊的小三角形.

探究拓展:以四邊形的4個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+4)個(gè)點(diǎn)為頂點(diǎn),可把四邊形分割成

        個(gè)互不重疊的小三角形.

問題解決:以n邊形的n個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+n)個(gè)點(diǎn)作為頂點(diǎn),可把原n邊形分割成

        個(gè)互不重疊的小三角形.

實(shí)際應(yīng)用:以八邊形的8個(gè)頂點(diǎn)和它內(nèi)部的2012個(gè)點(diǎn),共2020個(gè)頂點(diǎn),可把八邊形分割成多少個(gè)互

不重疊的小三角形?(要求列式計(jì)算)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:山東省中考真題 題型:解答題

問題提出:以n邊形的n個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+n)個(gè)點(diǎn)作為頂點(diǎn),可把原n邊形分割成多少個(gè)互不重疊的小三角形?問題探究:為了解決上面的問題,我們將采取一般問題特殊性的策略,先從簡(jiǎn)單和具體的情形入手:
探究一:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的1個(gè)點(diǎn)P,共4個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成多少個(gè)互不重疊的小三角形?如圖①,顯然,此時(shí)可把△ABC分割成3個(gè)互不重疊的小三角形.探究二:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的2個(gè)點(diǎn)P、Q,共5個(gè)點(diǎn)為頂點(diǎn),可把△ABC分割成多少個(gè)互不重疊的小三角形?在探究一的基礎(chǔ)上,我們可看作在圖①△ABC的內(nèi)部,再添加1個(gè)點(diǎn)Q,那么點(diǎn)Q的位置會(huì)有兩種情況:一種情況,點(diǎn)Q在圖①分割成的某個(gè)小三角形內(nèi)部.不妨假設(shè)點(diǎn)Q在△PAC內(nèi)部,如圖②;另一種情況,點(diǎn)Q在圖①分割成的小三角形的某條公共邊上.不妨假設(shè)點(diǎn)Q在PA上,如圖③.顯然,不管哪種情況,都可把△ABC分割成5個(gè)不重疊的小三角形.
探究三:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的3個(gè)點(diǎn)P、Q、R,共6個(gè)點(diǎn)為頂點(diǎn)可把△ABC分割成 (     )個(gè)互不重疊的小三角形,并在圖④中畫出一種分割示意圖.
探究四:以△ABC的三個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+3)個(gè)頂點(diǎn)可把△ABC分割成(     )個(gè)互不重疊的小三角形.
探究拓展:以四邊形的4個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+4)個(gè)頂點(diǎn)可把四邊形分割成(     )個(gè)互不重疊的小三角形.
問題解決:以n邊形的n個(gè)頂點(diǎn)和它內(nèi)部的m個(gè)點(diǎn),共(m+n)個(gè)頂點(diǎn)可把△ABC分割成(      )個(gè)互不重疊的小三角形.
實(shí)際應(yīng)用:以八邊形的8個(gè)頂點(diǎn)和它內(nèi)部的2012個(gè)點(diǎn),共2020個(gè)頂點(diǎn),可把八邊形分割成多少個(gè)互不重疊的小三角形?(要求列式計(jì)算)

查看答案和解析>>

同步練習(xí)冊(cè)答案