【題目】如圖,在ABC中,ACBCACB90°,過點(diǎn)CCDAB于點(diǎn)D,點(diǎn)EAB邊上一動(dòng)點(diǎn)(不含端點(diǎn)A,B),連接CE,過點(diǎn)BCE的垂線交直線CE于點(diǎn)F,交直線CD于點(diǎn)G

(1)求證:AECG;

(2)若點(diǎn)E運(yùn)動(dòng)到線段BD上時(shí)(如圖②),試猜想AE,CG的數(shù)量關(guān)系是否發(fā)生變化,請(qǐng)證明你的結(jié)論;

(3)過點(diǎn)AAHCE,垂足為點(diǎn)H,并交CD的延長(zhǎng)線于點(diǎn)M(如圖③),找出圖中與BE相等的線段,直接寫出答案BE=

【答案】1)詳見解析;(2)不變,AECG,詳見解析;(3CM

【解析】

1)如圖,根據(jù)等腰直角三角形的性質(zhì)可以得出∠BCD=∠ACD45°,根據(jù)直角三角形的三角形的性質(zhì)就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出結(jié)論;

2)如圖,根據(jù)等腰直角三角形的性質(zhì)可以得出∠BCD=∠ACD45°,根據(jù)直角三角形的三角形的性質(zhì)就可以得出∠CBF=∠ACE,由ASA就可以得出△BCG≌△CAE,就可以得出結(jié)論;

3)如圖,根據(jù)等腰直角三角形的性質(zhì)可以得出∠BCD=∠ACD45°,根據(jù)直角三角形的三角形的性質(zhì)就可以得出∠BCE=∠CAM,由ASA就可以得出△BCE≌△CAM,就可以得出結(jié)論.

(1)證明:∵ACBC,

ABCCAB

ACB90°

∴∠ABCA45°,ACEBCE90°

BFCE,

∴∠BFC90°

∴∠CBFBCE90°,

∴∠ACECBF

CDAB,ABCA45°,

∴∠BCDACD45°

∴∠ABCD

BCGCAE中,

∴△BCG≌△CAE(ASA),

AECG

2)解:不變,AECG

理由如下:

ACBC,

∴∠ABCA

∵∠ACB90°,

∴∠ABCA45°,ACEBCE90°

BFCE

∴∠BFC90°,

∴∠CBFBCE90°,

∴∠ACECBF

CDABABCA45°,

∴∠BCDACD45°

∴∠ABCD

BCGCAE中,

∴△BCG≌△CAE(ASA)

AECG

3BECM,

理由如下:∵ACBC,

∴∠ABC=∠CAB

∵∠ACB90°,

∴∠ABC=∠A45°,∠ACE+BCE90°.

AHCE,

∴∠AHC90°,

∴∠HAC+ACE90°,

∴∠BCE=∠HAC

∵在RTABC中,CDABACBC,

∴∠BCD=∠ACD45°

∴∠ACD=∠ABC

在△BCE和△CAM

∴△BCE≌△CAMASA),

BECM,

故答案為:CM

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一動(dòng)點(diǎn)從半徑為2的⊙O上的A0點(diǎn)出發(fā),沿著射線A0O方向運(yùn)動(dòng)到⊙O上的點(diǎn)A1處,再向左沿著與射線A1O夾角為60°的方向運(yùn)動(dòng)到⊙O上的點(diǎn)A2處;接著又從A2點(diǎn)出發(fā),沿著射線A2O方向運(yùn)動(dòng)到⊙O上的點(diǎn)A3處,再向左沿著與射線A3O夾角為60°的方向運(yùn)動(dòng)到⊙O上的點(diǎn)A4處;按此規(guī)律運(yùn)動(dòng)到點(diǎn)A2018處,則點(diǎn)A2018與點(diǎn)A0間的距離是( 。

A. 0 B. 2 C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)判斷△ABC的形狀,證明你的結(jié)論;

(3)點(diǎn)M是x軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△DCM的周長(zhǎng)最小時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,A(a,0),C(0c)且滿足:(a+6)2+0,長(zhǎng)方形ABCO在坐標(biāo)系中(如圖),點(diǎn)O為坐標(biāo)系的原點(diǎn).

(1)求點(diǎn)B的坐標(biāo).

(2)如圖1,若點(diǎn)M從點(diǎn)A出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng)(不超過點(diǎn)O),點(diǎn)N從原點(diǎn)O出發(fā),以1個(gè)單位/秒的速度向下運(yùn)動(dòng)(不超過點(diǎn)C),設(shè)M、N兩點(diǎn)同時(shí)出發(fā),在它們運(yùn)動(dòng)的過程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.

(3)如圖2,Ex軸負(fù)半軸上一點(diǎn),且∠CBE=∠CEB,Fx軸正半軸上一動(dòng)點(diǎn),∠ECF的平分線CDBE的延長(zhǎng)線于點(diǎn)D,在點(diǎn)F運(yùn)動(dòng)的過程中,請(qǐng)?zhí)骄俊?/span>CFE與∠D的數(shù)量關(guān)系,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為保護(hù)環(huán)境,我市公交公司計(jì)劃購(gòu)買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購(gòu)買A型公交車1輛,B型公交車2輛,共需400萬元;若購(gòu)買A型公交車2輛,B型公交車1輛,共需350萬元.

(1)求購(gòu)買A型和B型公交車每輛各需多少萬元?

(2)預(yù)計(jì)在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購(gòu)買A型和B型公交車的總費(fèi)用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購(gòu)車方案?

(3)在(2)的條件下,哪種購(gòu)車方案總費(fèi)用最少?最少總費(fèi)用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,的平分線與的平分線交于點(diǎn),則的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=DC,E、F分別是AD、BC的中點(diǎn),G、H分別是對(duì)角線BD、AC的中點(diǎn).

(1)求證:四邊形EGFH是菱形;

(2)若AB=1,則當(dāng)ABC+DCB=90°時(shí),求四邊形EGFH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在8×8的網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,線段交點(diǎn)稱作格點(diǎn).任意連接這些格點(diǎn),可得到一些線段.按要求作圖:

(1)請(qǐng)畫出ABC的高AD;

(2)請(qǐng)連接格點(diǎn),用一條線段將圖中ABC分成面積相等的兩部分;

(3)直接寫出ABC的面積是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【探究函數(shù)yx的圖象與性質(zhì)】

(1)函數(shù)yx的自變量x的取值范圍是________;

(2)下列四個(gè)函數(shù)圖象中,函數(shù)yx的圖象大致是________;

(3)對(duì)于函數(shù)yx,求當(dāng)x>0時(shí),y的取值范圍.請(qǐng)將下列的求解過程補(bǔ)充完整.

解:∵x>0,∴yx=()2+________.

≥0,∴y≥________.

【拓展運(yùn)用】

(4)若函數(shù)y,求y的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案