【題目】國家推行“節(jié)能減排,低碳經(jīng)濟”政策后,某環(huán)保節(jié)能設(shè)備生產(chǎn)的產(chǎn)品供不應(yīng)求,若該企業(yè)的某種環(huán)保設(shè)備每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于44萬元,每套產(chǎn)品的售價不低于80萬元.已知這種設(shè)備的月產(chǎn)量x(套)與每套的售價y1(萬元)間滿足關(guān)系式y(tǒng)1=160﹣2x,月產(chǎn)量x(套)與生產(chǎn)總成本y2(萬元)存在如圖所示的函數(shù)關(guān)系.
(1)直接寫出y2與x之間的函數(shù)關(guān)系式;
(2)求月產(chǎn)量x的范圍;
(3)當(dāng)月產(chǎn)量x(套)為多少時,這種設(shè)備的利潤W(萬元)最大?最大利潤是多少?
【答案】
(1)解:設(shè)y2與x的函數(shù)關(guān)系式為y2=kx+b,
,得 ,
∴y2與x之間的函數(shù)關(guān)系式是y2=20x+600
(2)解:由題意可得, ,
解得,25≤x≤40,
即月產(chǎn)量x的取值范圍是25≤x≤34
(3)解:由題意可得,
W=xy1﹣y2=x(160﹣20x)﹣20x﹣600,
=﹣2(x﹣35)2+1850,
∵25≤x≤40,
∴x=35時,W取得最大值,此時W=1850,
即當(dāng)月產(chǎn)量x(套)為35套時,這種產(chǎn)品的利潤W(萬元)最大,最大利潤是2650萬元
【解析】(1)觀察圖像,y2與x是一次函數(shù),代入圖像上的兩點坐標(biāo),即可求出函數(shù)解析式。
(2)找出題中的不等關(guān)系:每套產(chǎn)品的生產(chǎn)成本≤44萬元,每套產(chǎn)品的售價≥80萬元。列出不等式組求解,即可求出x的取值范圍
(3)先求出W與x的函數(shù)解析式,求出頂點坐標(biāo),即可求出結(jié)果。
【考點精析】通過靈活運用一元一次不等式組的解法和確定一次函數(shù)的表達式,掌握解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 );確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于點P(a,b),點Q(c,d),如果a﹣b=c﹣d,那么點P與點Q就叫作等差點.例如:點P(4,2),點Q(﹣1,﹣3),因4﹣2=1﹣(﹣3)=2,則點P與點Q就是等差點.如圖在矩形GHMN中,點H(2,3),點N(﹣2,﹣3),MN⊥y軸,HM⊥x軸,點P是直線y=x+b上的任意一點(點P不在矩形的邊上),若矩形GHMN的邊上存在兩個點與點P是等差點,則b的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線m與直線n垂直相交于O,點A在直線m上運動,點B 在直線n上運動,AC、BC分別是∠BAO和∠ABO的角平分線.
(1)求∠ACB的大。
(2)如圖2,若BD是△AOB的外角∠OBE的角平分線,BD與AC相交于點D,點A、B在運動的過程中,∠ADB的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值;
(3)如圖3,過C作直線與AB交于F,且滿足∠AGO-∠BCF=45°,求證:CF∥OB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個頂點的位置如圖所示,將△ABC水平向左平移3個單位,再豎直向下平移2個單位。
(1)讀出△ABC的三個頂點坐標(biāo);
(2)請畫出平移后的△A′B′C′,并直接寫出點A/、B′、C′的坐標(biāo);
(3)求平移以后的圖形的面積 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是菱形,在平面直角坐標(biāo)系中的位置如圖,邊AD經(jīng)過原點O,已知A(0,﹣3),B(4,0),反比例函數(shù)圖象經(jīng)過點C,直線AC交雙曲線另一支于點E,連接DE,CD,設(shè)反比例函數(shù)解析式為y1= ,直線AC解析式為y2=ax+b.
(1)求反比例函數(shù)解析式;
(2)當(dāng)y1<y2時,求x的取值范圍;
(3)求△CDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)林業(yè)局要考察一種樹苗移植的成活率,對該地區(qū)這種樹苗移植成活的情況進行調(diào)查統(tǒng)計,并繪制了如圖所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息解決下列問題:
(1)這種樹苗成活的頻率穩(wěn)定在___________,成活的概率估計值為___________.
(2)該地區(qū)已經(jīng)移植這種樹苗5萬棵.
①估計這種樹苗成活___________萬棵.
②如果該地區(qū)計劃成活18萬棵這種樹苗,那么還需移植這種樹苗約多少萬棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師抽取了九年級部分男生擲實心球的成績進行整理,分成5個小組(x表示成績,單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.并繪制出扇形統(tǒng)計圖和頻數(shù)分布直方圖(不完整).
(1)抽取的這部分男生有人,請補全頻數(shù)分布直方圖;
(2)抽取的這部分男生成績的中位數(shù)落在組?扇形統(tǒng)計圖中D組對應(yīng)的圓心角是多少度?
(3)如果九年級有男生400人,請你估計他們擲實心球的成績達到合格的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.
(1)作△ABC關(guān)于點C成中心對稱的△A1B1C1.
(2)將△A1B1C1向右平移4個單位,作出平移后的△A2B2C2.
(3)在x軸上求作一點P,使PA1+PC2的值最小,并寫出點P的坐標(biāo)(不寫解答過程,直接寫出結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com