如圖,△OAC中,以O(shè)為圓心、OA為半徑作⊙O,作OB⊥OC交⊙O于B,垂足為O,連接AB交OC于點(diǎn)D,∠CAD=∠CDA.                                      
(1)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若OA=5,OD=1,求線段AC的長(zhǎng).
(1) 證明:∵點(diǎn)A、B在⊙上      
∴OB=OA                
∴∠OBA=∠ OAB               
∵∠CAD=∠CDA=∠BDO                
∴∠CAD+∠OAB=∠BDO+∠OBA                
∵OB⊥OC         ∴∠CAD+∠OAB=90°       
∴∠OAC=90°,  ∴AC是⊙O的切線
(2) 解: 設(shè)AC的長(zhǎng)為x
∵∠CAD=∠CDA
∴CD長(zhǎng)為x
由(1)知OA⊥AC
∴在Rt△OAC中,OA2+AC2=OC  即52+x2=(1+x)2
∴=12,  即線段AC長(zhǎng)為12
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•遵義)如圖,△OAC中,以O(shè)為圓心,OA為半徑作⊙O,作OB⊥OC交⊙O于B,垂足為O,連接AB交OC于點(diǎn)D,∠CAD=∠CDA.
(1)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若OA=5,OD=1,求線段AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(貴州遵義卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,△OAC中,以O(shè)為圓心,OA為半徑作⊙O,作OB⊥OC交⊙O于B,垂足為O,連接AB交OC于點(diǎn)D,∠CAD=∠CDA.
(1)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若OA=5,OD=1,求線段AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(貴州遵義卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,△OAC中,以O(shè)為圓心,OA為半徑作⊙O,作OB⊥OC交⊙O于B,垂足為O,連接AB交OC于點(diǎn)D,∠CAD=∠CDA.

(1)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;

(2)若OA=5,OD=1,求線段AC的長(zhǎng).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年貴州省遵義市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,△OAC中,以O(shè)為圓心,OA為半徑作⊙O,作OB⊥OC交⊙O于B,垂足為O,連接AB交OC于點(diǎn)D,∠CAD=∠CDA.
(1)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若OA=5,OD=1,求線段AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案