精英家教網如圖,在△ABC中(AB≠AC),M為BC的中點,AD平分∠BAC交BC于D,BE⊥AD于E,CF⊥AD于F,求證:ME=MF.
分析:如圖,延長CF交AB于點G,延長BE交AC的延長線于點H.根據(jù)三角形中位線定理證得MF=ME=
1
2
GB.
解答:精英家教網證明:如圖,延長CF交AB于點G,延長BE交AC的延長線于點H.
∵AF⊥GC,AD平分∠BAC,
∴AG=AC,GF=CF,
又∵點M是BC的中點,
∴MF是△BCG的中位線,
∴MF=
1
2
GB.
同理,ME=
1
2
HC.
∵AD平分∠BAC,BE⊥AD,
∴AB=AH,
∴BG=AB-AG=AH-AC=CH,即BG=CH,
∴MF=ME.
點評:本題考查了三角形中位線定理和等腰三角形的判定與性質.解題的難點是作出圖中的輔助線,構建等腰三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案