30°
分析:此題應(yīng)先作輔助線,作作BM⊥AD于M,再BM上截取BN,使BN=AD.先證△ABN≌△CAD,得到,AN=BN=AD.然后證△ABN≌△DBN,得出△AND是等邊三角形,最后求出∠ABD的度數(shù).
解答:
解:作BM⊥AD于M,再BM上截取BN,使BN=AD.
∴∠ABN+∠BAM=90°,
又∠CAD+∠BAM=∠BAC=90°(已知),
∴∠ABN+∠BAM=∠CAD+∠BAM(等量代換),
∴∠ABN=∠CAD,
所以在△ABN和△CAD中,
AB=AC(已知),BN=AD(截取)
∠ABN=∠CAD(已證)
∴△ABN≌△CAD(邊角邊).
∴AN=CD,∠BAN=∠ACD,
又已知AD=CD(已知)
∴∠CAD=∠ACD,
∴∠ABN=∠BAN(等量代換)
∴AN=BN=AD.
∵AB=BD(已知),BM⊥AD(作圖),
∴∠ABN=∠DBN(等腰三角形的性質(zhì))
∴△ABN≌△DBN(邊角邊),
∴DN=AN,
∴DN=AN=AD,
∴△AND是等邊三角形.
∴∠NAD=60°.
∠ABN+∠BAN+∠NAD=90°
∴∠ABN+∠ABN+60°=90°
∴∠ABN=15°即得到∠DBN=15°.
∴∠ABD=∠ABN+∠DBN=30°.
故答案為:30°
點評:此題考查的知識點是等腰直角三角形和等腰三角形的性質(zhì),解答此題的關(guān)鍵是先作輔助線,作作BM⊥AD于M,再BM上截取BN,使BN=AD.此題較難.