(2005•青島)如圖,在等腰梯形ABCD中,AD∥BC,M、N分別為AD、BC的中點(diǎn),E、F分別是BM、CM的中點(diǎn).
(1)求證:△ABM≌△CDM;
(2)四邊形MENF是什么圖形?請(qǐng)證明你的結(jié)論;
(3)若四邊形MENF是正方形,則梯形的高與底邊BC有何數(shù)量關(guān)系?并請(qǐng)說明理由.

【答案】分析:(1)已知四邊形ABCD為等腰梯形,推出AB=CD,∠A=∠D,AM=DM故可證明三角形全等.
(2)由1證明三角形全等得出各邊之間的關(guān)系推出四邊形MENF是菱形.
(3)由梯形的性質(zhì)可推出四邊形MENF是正方形推出MN⊥BC且MN=BC.
解答:證明:(1)∵ABCD為等腰梯形,
∴AB=DC,∠A=∠D.
∵M(jìn)是AD中點(diǎn),
∴AM=DM.
∴△ABM≌△DCM.

(2)四邊形MENF是菱形(若考生回答是平行四邊形且給出證明,則此問題只能得2分)
由△ABM≌△DCM,得MB=MC,
∵E、F、N是MB、MC、BC的中點(diǎn),
∴ME=BM,MF=MC,NF=BM,NE=MC.
∴ME=MF=FN=NE.
∴四邊形MENF是菱形.

(3)梯形的高等于底邊BC的一半連接MN,
∵M(jìn)ENF是正方形,
∴∠BMC=90°.
∵M(jìn)B=MC,N是中點(diǎn),
∴MN⊥BC且MN=BC.
點(diǎn)評(píng):本題主要考查等腰梯形的性質(zhì)的應(yīng)用,全等三角形的判定以及菱形的判定定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(06)(解析版) 題型:解答題

(2005•青島)如圖,在矩形ABCD中,AB=6米,BC=8米,動(dòng)點(diǎn)P以2米/秒的速度從點(diǎn)A出發(fā),沿AC向點(diǎn)C移動(dòng),同時(shí)動(dòng)點(diǎn)Q以1米/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B移動(dòng),設(shè)P、Q兩點(diǎn)移動(dòng)t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時(shí)間t的關(guān)系式;
(2)在P、Q兩點(diǎn)移動(dòng)的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時(shí)點(diǎn)P的位置;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(09)(解析版) 題型:解答題

(2005•青島)如圖,在矩形ABCD中,AB=6米,BC=8米,動(dòng)點(diǎn)P以2米/秒的速度從點(diǎn)A出發(fā),沿AC向點(diǎn)C移動(dòng),同時(shí)動(dòng)點(diǎn)Q以1米/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B移動(dòng),設(shè)P、Q兩點(diǎn)移動(dòng)t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時(shí)間t的關(guān)系式;
(2)在P、Q兩點(diǎn)移動(dòng)的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時(shí)點(diǎn)P的位置;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2005•青島)如圖,在矩形ABCD中,AB=6米,BC=8米,動(dòng)點(diǎn)P以2米/秒的速度從點(diǎn)A出發(fā),沿AC向點(diǎn)C移動(dòng),同時(shí)動(dòng)點(diǎn)Q以1米/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B移動(dòng),設(shè)P、Q兩點(diǎn)移動(dòng)t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時(shí)間t的關(guān)系式;
(2)在P、Q兩點(diǎn)移動(dòng)的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時(shí)點(diǎn)P的位置;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年四川省新課標(biāo)中考數(shù)學(xué)模擬試卷(3)(解析版) 題型:解答題

(2005•青島)如圖,在矩形ABCD中,AB=6米,BC=8米,動(dòng)點(diǎn)P以2米/秒的速度從點(diǎn)A出發(fā),沿AC向點(diǎn)C移動(dòng),同時(shí)動(dòng)點(diǎn)Q以1米/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B移動(dòng),設(shè)P、Q兩點(diǎn)移動(dòng)t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時(shí)間t的關(guān)系式;
(2)在P、Q兩點(diǎn)移動(dòng)的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時(shí)點(diǎn)P的位置;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年山東省青島市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•青島)如圖,在矩形ABCD中,AB=6米,BC=8米,動(dòng)點(diǎn)P以2米/秒的速度從點(diǎn)A出發(fā),沿AC向點(diǎn)C移動(dòng),同時(shí)動(dòng)點(diǎn)Q以1米/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B移動(dòng),設(shè)P、Q兩點(diǎn)移動(dòng)t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時(shí)間t的關(guān)系式;
(2)在P、Q兩點(diǎn)移動(dòng)的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時(shí)點(diǎn)P的位置;若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案